Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (12): 2371-2381.doi: 10.3864/j.issn.0578-1752.2025.12.008

• PLANT PROTECTION • Previous Articles     Next Articles

Establishment and Application of RT-RAA-CRISPR/Cas12a-Based Visual Detection of Prunus Necrotic Ringspot Virus

ZHANG XiaoQi1(), SHEN JianGuo2(), LIAO FuRong3, LI WeiMin4, JIN YuJie1, WUFUER Shayidan1, ZHENG LuPing1()   

  1. 1 Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002
    2 Technology Center of Fuzhou Custom District, Fuzhou 350001
    3 Xiamen Customs District Technology Center, Xiamen 361026, Fujian
    4 Department of Plant Protection, Beijing University of Agriculture/Key Laboratory for Northern Urban Agriculture, Ministry of Agriculture and Rural Affairs, Beijing 102206
  • Received:2025-03-10 Accepted:2025-04-29 Online:2025-06-19 Published:2025-06-19
  • Contact: SHEN JianGuo, ZHENG LuPing

Abstract:

【Objective】The study aims to establish a novel visual detection technique for prunus necrotic ringspot virus (PNRSV) by combining reverse transcription recombinase-aided amplification (RT-RAA) with CRISPR/Cas12a system (RT-RAA-CRISPR/ Cas12a).【Method】Primers with high amplification efficiency and strong specificity were designed and selected based on the conserved regions of the coat protein (CP) gene of PNRSV. The detection conditions, including primer, probe concentration, temperature, and reaction time were optimized to develop a visual detection method for PNRSV by RT-RAA-CRISPR/Cas12a technology. The specificity of this method was evaluated by detecting PNRSV and common Prunus viruses, including plum pox virus (PPV), apple mosaic virus (ApMV), cucumber mosaic virus (CMV), potato virus X (PVX), and potato virus Y (PVY). The total RNAs from PNRSV-infected fruit were diluted in 10-fold gradients, then RT-PCR, RT-RAA and RT-RAA-CRISPR/Cas12a were performed to compare the sensitivity of the three methods. The RT-RAA-CRISPR/Cas12a and RT-PCR methods were used to detect 31 peach fruit test samples suspected to be infected with the virus collected at the port to verify the practicability of the visual detection method.【Result】The RT-RAA-CRISPR/Cas12a-based visual detection method for PNRSV was successfully established. The optimized working concentrations were as follows: RT-RAA-PNRSV-F2/R2 primers at 0.4 μmol·L-1, fluorescent reporter (FQ) at 800 nmol·L-1, CRISPR-Cas12a at 200 nmol·L-1, and PNRSV-crRNA (CRISPR RNA) at 240 nmol·L-1, the reaction conditions were performed at 41 ℃ for 45 min. This method showed high specificity for PNRSV and had no cross-reaction with other common Prunus viruses. The limit of detection for PNRSV RNA in peach fruit samples reached 3.06 pg·μL-1 and 306 fg·μL-1 using RT-RAA and RT-RAA-CRISPR/Cas12a methods, respectively, showing the sensitivity of RT-RAA-CRISPR/Cas12a was 10 times higher than that of RT-RAA and RT-PCR. Among the 31 tested peach fruit samples at the port, 14 positive samples were identified by RT-PCR, while 15 positive samples were found by RT-RAA-CRISPR/Cas12a, indicating a high level of consistency between the two methods.【Conclusion】The RT-RAA-CRISPR/Cas12a visual detection method for PNRSV has been established. It is characterized by simplicity, rapidity, high sensitivity, high specificity, and visual readability, making it well-suited for rapid on-site detection of PNRSV.

Key words: prunus necrotic ringspot virus (PNRSV), RT-RAA, CRISPR/Cas12a, visual detection

Table 1

Sequences of primer used in this study"

方法Method 引物名称Primer name 引物序列Primer sequence (5′ to 3′) 靶标长度Target size (bp)
RT-PCR RT-PCR-PNRSV-F TAGGGTTTCGAGCGGTATAGGA 525
RT-PCR-PNRSV-R TCATCGACCAGCAAGACATCAG
RT-RAA RT-RAA-PNRSV-F1 GAATAACCCGAATAGGAATAGGAACCCGAATA 220
RT-RAA-PNRSV-R1 CAACTGAGGGAGAGTGGTCGTGAAGTCAATAC
RT-RAA-PNRSV-F2 CGAATAACCCGAATAGGAATAGGAACCCGA 310
RT-RAA-PNRSV-R2 TTATAGTCCTCCACCATCCCAATCCAACCATT
RT-RAA-PNRSV-F3 TATTGACTTCACGACCACTCTCCCTCAGTTGA 320
RT-RAA-PNRSV-R3 CACTTACCACTACGTACAAATCCCTAACCAA
RT-RAA-PNRSV-F4 GAGGTGACGACGACAGAGGCAGTGAAGTAC 352
RT-RAA-PNRSV-R4 TTACCACTACGTACAAATCCCTAACCAAGACC

Table 2

The table of multi-factor orthogonal experiment for Cas12a/crRNA"

试验组号
Group number
Cas12a浓度
Cas12a concentration
(nmol·L-1)
crRNA浓度
crRNA concentration
(nmol·L-1)
试验组号
Group number
Cas12a浓度
Cas12a concentration
(nmol·L-1)
crRNA浓度
crRNA concentration
(nmol·L-1)
1 400 480 9 400 240
2 300 480 10 300 240
3 200 480 11 200 240
4 100 480 12 100 240
5 400 360 13 400 120
6 300 360 14 300 120
7 200 360 15 200 120
8 100 360 16 100 120

Fig. 1

Screening of RT-RAA primers and optimization of reaction conditions"

Fig. 2

Feasibility analysis and optimization of RT-RAA-CRISPR/Cas12a"

Fig. 3

Specificity test of RT-RAA-CRISPR/Cas12a"

Fig. 4

Sensitivity test of RT-RAA-CRISPR/Cas12a"

Fig. 5

Reproducibility test of RT-RAA-CRISPR/Cas12a"

Fig. 6

Detection of peach fruits test samples suspected to be infected with virus"

[1]
KING A M Q, ADAMS M J, LEFKOWITZ E. Virus taxonomy: Ninth report of the international committee on taxonomy of viruses[R]. Amsterdam: Elsevier, 2011.
[2]
纪开燕, 秦朗, 黄则月, 贺振, 赵景奎. 扬州市蔷薇科植物PNRSV的鉴定与序列分析. 福建林业科技, 2024, 51(4): 17-23.
JI K Y, QIN L, HUANG Z Y, HE Z, ZHAO J K. Identification and sequence analysis of prunus necrotic ring spot virus on Rosaceae plants in Yangzhou, Jiangsu. Journal of Fujian Forestry Science and Technology, 2024, 51(4): 17-23. (in Chinese)
[3]
殷智婷, 韩剑, 周国辉, 张祥林, 罗明, 潘亚南. 李属坏死环斑病毒(PNRSV)新疆巴旦木分离物外壳蛋白基因(CP)片段的克隆与序列分析. 果树学报, 2012, 29(5): 740-746.
YIN Z T, HAN J, ZHOU G H, ZHANG X L, LUO M, PAN Y N. Cloning and sequence analysis of the coat protein (CP) gene fragment of the Xinjiang almond isolate of prunus necrotic ringspot virus (PNRSV). Journal of Fruit Science, 2012, 29(5): 740-746. (in Chinese)
[4]
阮小凤, 杨勇, 马书尚, 周瑗月. 甜樱桃病毒病的ELISA检测研究. 山东农业大学学报, 1998, 29(3): 277-282.
RUAN X F, YANG Y, MA S S, ZHOU Y Y. Research on virus detection by ELISA in sweet cherry. Journal of Shandong Agricultural University, 1998, 29(3): 277-282. (in Chinese)
[5]
APARICIO F, SÁNCHEZ-PINA M A, SÁNCHEZ-NAVARRO J A, PALLÁS V. Location of prunus necrotic ringspot Ilarvirus within pollen grains of infected nectarine trees: Evidence from RT-PCR, dot-blot and in situ hybridization. European Journal of Plant Pathology, 1999, 105: 623-627.
[6]
郭俊, 陈精兰, 李凡, 黄扬, 尹朝先, 陈海如. 李坏死环斑病毒检测方法的比较研究. 西南师范大学学报(自然科学版), 2008, 33(5): 91-94.
GUO J, CHEN J L, LI F, HUANG Y, YIN C X, CHEN H R. Comparative studies on detection methods of prunus necrotic ringspot virus. Journal of Southwest China Normal University (Natural Science Edition), 2008, 33(5): 91-94. (in Chinese)
[7]
HAMMOND R W, CROSSLIN J M, PASINI R, HOWELL W E, MINK G I. Differentiation of closely related but biologically distinct cherry isolates of prunus necrotic ringspot virus by polymerase chain reaction. Journal of Virological Methods, 1999, 80(2): 203-212.

pmid: 10471030
[8]
BEAVER-KANUYA E, HARPER S J. Detection and quantification of four viruses in Prunus pollen: Implications for biosecurity. Journal of Virological Methods, 2019, 271: 113673.
[9]
韩剑, 罗明, 殷智婷, 周国辉, 张祥林. 李属坏死环斑病毒(PNRSV) RT-LAMP检测方法的建立. 新疆农业大学学报, 2014, 37(4): 327-332.
HAN J, LUO M, YIN Z T, ZHOU G H, ZHANG X L. Development of reverse transcription loop-mediated isothermal amplification assay for detection of prunus necrotic ringspot virus. Journal of Xinjiang Agricultural University, 2014, 37(4): 327-332. (in Chinese)
[10]
吕蓓, 程海荣, 严庆丰, 黄震巨, 沈桂芳, 张志芳, 李轶女, 邓子新, 林敏, 程奇. 用重组酶介导扩增技术快速扩增核酸. 中国科学(生命科学), 2010, 40(10): 983-988.
B, CHENG H R, YAN Q F, HUANG Z J, SHEN G F, ZHANG Z F, LI Y N, DENG Z X, LIN M, CHENG Q. Recombinase-aid amplification: A novel technology of in vitro rapid nucleic acid amplification. Scientia Sinica (Vitae), 2010, 40(10): 983-988. (in Chinese)
[11]
LI J, MACDONALD J, VON STETTEN F. Correction: Review: A comprehensive summary of a decade development of the recombinase polymerase amplification. The Analyst, 2020, 145(5): 1950-1960.
[12]
JIANG F G, DOUDNA J A. CRISPR-Cas 9 structures and mechanisms. Annual Review of Biophysics, 2017, 46: 505-529.
[13]
MAKAROVA K S, WOLF Y I, IRANZO J, SHMAKOV S A, ALKHNBASHI O S, BROUNS S J J, CHARPENTIER E, CHENG D, HAFT D H, HORVATH P, et al. Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18(2): 67-83.

doi: 10.1038/s41579-019-0299-x pmid: 31857715
[14]
CHEN J S, MA E, HARRINGTON L B, DA COSTA M, TIAN X, PALEFSKY J M, DOUDNA J A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360(6387): 436-439.

doi: 10.1126/science.aar6245 pmid: 29449511
[15]
董铮, 赵振兴, 范奇璇, 王思元, 周涛, 张永江. 番茄斑驳花叶病毒RT-RAA-CRISPR/Cas12a的可视化检测方法的建立. 植物病理学报, doi: 10.13926/j.cnki.apps.001357.
DONG Z, ZHAO Z X, FAN Q X, WANG S Y, ZHOU T, ZHANG Y J. Establishment of RT-RAA-CRISPR/Cas12a-based visual detection of tomato mottle mosaic virus. Acta Phytopathologica Sinica, doi: 10.13926/j.cnki.apps.001357. (in Chinese)
[16]
赵振兴, 范奇璇, 王思元, 董铮, 胡中泽, 张永江. 辣椒轻斑驳病毒RT-RAA-CRISPR/Cas12a可视化检测方法的建立. 河南农业科学, 2024, 53(9): 80-87.
ZHAO Z X, FAN Q X, WANG S Y, DONG Z, HU Z Z, ZHANG Y J. Establishment of RT-RAA-CRISPR/Cas12a based visual detection method for pepper mild mottle virus. Journal of Henan Agricultural Sciences, 2024, 53(9): 80-87. (in Chinese)
[17]
DUAN X Y, MA W D, JIAO Z Y, TIAN Y Y, ISMAIL R G, ZHOU T, FAN Z F. Reverse transcription-recombinase-aided amplification and CRISPR/Cas12a-based visual detection of maize chlorotic mottle virus. Phytopathology Research, 2022, 4(1): 23.
[18]
WANG J K, HUANG X Q, CHEN S P, CHEN J H, LIANG Z Y, CHEN B, YANG X, ZHOU G H, ZHANG T. On-site and visual detection of sorghum mosaic virus and rice stripe mosaic virus based on reverse transcription-recombinase-aided amplification and CRISPR/Cas12a. Frontiers in Genome Editing, 2023, 5: 1124794.
[19]
赵振兴, 范奇璇, 王思元, 董铮, 胡中泽, 周涛, 张永江. RT-RAA- CRISPR/Cas12a可视化检测番茄褐色皱纹果病毒. 植物检疫, 2024, 38(3): 14-20.
ZHAO Z X, FAN Q X, WANG S Y, DONG Z, HU Z Z, ZHOU T, ZHANG Y J. Visual detection of tomato brown rugose fruit virus by RT-RAA-CRISPR/Cas12a method. Plant Quarantine, 2024, 38(3): 14-20. (in Chinese)
[20]
杨丽华, 许力士, 覃绍敏, 韦珊珊, 陈凤莲, 林俊, 韦珏, 马玲, 秦树英, 陆晨阳, 彭娜, 杨磊, 欧阳康, 刘金凤. 基于RT-RAA-CRISPR/ Cas12a的猪肠病毒G型检测方法建立及检测效果初步评价. 中国动物传染病学报, doi: 10.19958/j.cnki.cn31-2031/s.20240813.002.
YANG L H, XU L S, QIN S M, WEI S S, CHEN F L, LIN J, WEI J, MA L, QIN S Y, LU C Y, PENG N, YANG L, OUYANG K, LIU J F. Establishment of porcine enterovirus G detection method based on RT-RAA-CRISPR/Cas12a and preliminary evaluation of detection effect . Chinese Journal of Animal Infectious Diseases, doi: 10.19958/j.cnki.cn31-2031/s.20240813.002. (in Chinese)
[21]
黄超华, 阮周曦, 路平, 吴江, 曹琛福, 林彦星, 花群义. 小反刍兽疫病毒RT-RAA-CRISPR/Cas12a可视化快速检测方法的建立. 中国兽医学报, 2023, 43(10): 2030-2034.
HUANG C H, RUAN Z X, LU P, WU J, CAO C F, LIN Y X, HUA Q Y. Establishment of a visual method for rapid detection of peste des petits ruminants virus based on RT-RAA-CRISPR/Cas12a. Chinese Journal of Veterinary Science, 2023, 43(10): 2030-2034. (in Chinese)
[22]
荣春蕊, 李晓颍, 苏凯, 张晨光, 肖坤, 李刚, 武军凯, 肖啸, 张立彬, 刘春生. 基于RT-PCR方法对河北省桃病毒和类病毒种类的调查鉴定. 中国果树, 2024(8): 94-97, 103.
RONG C R, LI X Y, SU K, ZHANG C G, XIAO K, LI G, WU J K, XIAO X, ZHANG L B, LIU C S. Investigation and identification of peach viruses and viroids in Hebei Province based on RT-PCR method. China Fruits, 2024(8): 94-97, 103. (in Chinese)
[23]
秦文韬, 王忠跃, 张昊. 环介导恒温扩增技术在植物病原物检测中的应用. 中国农业科技导报, 2013, 15(3): 169-174.
QIN W T, WANG Z Y, ZHANG H. Application of loop-mediated isothermal amplification in detecting plant pathogens. Journal of Agricultural Science and Technology, 2013, 15(3): 169-174. (in Chinese)

doi: 10.3969/j.issn.1008-0864.2013.03.24
[24]
乔乔, 吴涛, 朱小娟, 葛以跃, 陈银, 崔仑标. 新型冠状病毒亚基因组RNA荧光重组酶介导等温扩增检测方法的建立及评价. 中国病毒病杂志, 2022, 12(6): 444-447.
QIAO Q, WU T, ZHU X J, GE Y Y, CHEN Y, CUI L B. Establishment and evaluation of fluorescent RT-RAA assay for SARS-CoV-2 sgRNAs detection. Chinese Journal of Viral Diseases, 2022, 12(6): 444-447. (in Chinese)
[25]
高越, 刘伯玉, 任翠平, 高勇, 朱禹, 杨莉, 温萌, 钱振, 芦宝静, 柳燕. 新型冠状病毒核酸荧光型RT-RAA检测方法的建立及其评价. 安徽医科大学学报, 2021, 56(6): 980-985.
GAO Y, LIU B Y, REN C P, GAO Y, ZHU Y, YANG L, WEN M, QIAN Z, LU B J, LIU Y. Establishment and evaluation of fluorescence RT-RAA detection method for SARS-CoV-2 nucleic acid. Journal of Anhui Medical University, 2021, 56(6): 980-985. (in Chinese)
[26]
WU T, GE Y Y, ZHAO K C, ZHU X J, CHEN Y, WU B, ZHU F C, ZHU B L, CUI L B. A reverse-transcription recombinase-aided amplification assay for the rapid detection of N gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Virology, 2020, 549: 1-4.
[27]
GAO J, HUANG S Y, JIANG J, MIAO Q J, ZHENG R, KANG Y L, TANG W T, ZUO H L, HE J G, XIE J F. Dual-CRISPR/Cas12a- assisted RT-RAA visualization system for rapid on-site detection of nervous necrosis virus (NNV). Analytica Chimica Acta, 2025, 1335: 343469.
[1] ZONG Xiao-Juan, WANG Wen-Wen, WEI Hai-Rong, WANG Jia-Wei, CHEN Xin, XU Li, LIU Qing-Zhong. Development and Application of a Multiplex RT-PCR Assay for Detecting Three Sweet Cherry Virus Species [J]. Scientia Agricultura Sinica, 2014, 47(6): 1111-1118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!