Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (10): 1947-1957.doi: 10.3864/j.issn.0578-1752.2025.10.007

• PLANT PROTECTION • Previous Articles     Next Articles

Cloning,Expression and Binding Characteristic with Bt Cry8Ea3 Toxin of HpvATPase B from Holotrichia parallela

QIAO YingCui1(), WANG BoYu1(), WANG Qian1, ZHAO Dan1(), GUO Wei2, NING WenShuo3, CHANG MengYing4, WANG Hai1, LU XiuJun1()   

  1. 1 College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei
    2 Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081
    3 Ningjin County Agriculture and Rural Bureau, Ningjin 055550, Hebei
    4 Zhuozhou County Agriculture and Rural Bureau, Zhuozhou 072750, Hebei
  • Received:2025-01-17 Accepted:2025-03-24 Online:2025-05-16 Published:2025-05-21
  • Contact: ZHAO Dan, LU XiuJun

Abstract:

【Objective】 This study aims to investigate the function of HpvATPase B protein, and to clarify the role of this protein in the action of Bacillus thuringiensis (Bt) crystal protein against the larvae of Holotrichia parallela. 【Method】 Based on transcriptome data of the H. parallela, the open reading frame (ORF) of HpvATPase B was identified and cloned. HpvATPase B was expressed in vitro using a prokaryotic expression system and detected by Western blot. The expression levels of HpvATPase B in different tissues of 2-day-old of 3rd instar larvae of H. parallela were determined using qRT-PCR. The binding characteristics of HpvATPase B protein to Bt Cry8Ea3 toxin were detected by Ligand blot and ELISA. Sf9 cells transfected with HpvATPase B were subjected to immunofluorescence and cell viability assays to evaluate the binding of HpvATPase B to Bt Cry8Ea3, and the changes in cell mortality after treatment with Cry8Ea3 were compared. 【Result】 The cloned HpvATPase B (GenBank accession number: MZ004965) is about 1 497 bp, encoding 498 amino acids with a predicted molecular weight of 55 kDa and an isoelectric point (pI) of 5.51. Three N-glycosylation sites (239N, 333N, 458N) and four O-glycosylation sites (4S, 8T, 23S, 28S) were predicted. HpvATPase B protein has the highest sequence identity (55%) with Trypoxylus dichotomus V-ATPase B (GenBank accession number: GJQ75664.1) and Oryctes borbonicus V-ATPase B (GenBank accession number: KRT83436.1). The recombinant plasmid pET30a-HpvATPase B was successfully constructed, yielding a 55 kDa protein with peak expression at 8 h post-induction. The HpvATPase B had the highest expression level in the Malpighian tubules. Ligand blot confirmed specific binding between HpvATPase B and Bt Cry8Ea3 but not Cry1Ab35. The affinity of HpvATPase B protein to Bt Cry8Ea3 and Cry1Ab35 was determined by ELISA. The binding ability to Bt Cry8Ea3 was strong, and the Kd was 7.20 nmol·L-1, but it did not bind to Cry1Ab35, and the affinity did not change with the concentration of Cry1Ab35. pFastBacTM HTA-HpvATPase B was constructed and Sf9 transgenic cells were successfully obtained. Immunofluorescence assay showed that HpvATPase B protein specifically bound to Cry8Ea3 toxin protein. Cell bioassay showed that when the concentration of Cry8Ea3 protein was 10 and 100 μg·mL-1, the average corrected mortality of transgenic cells was 25.92% and 75.53%, respectively, and the difference was significant (P<0.05), indicating that HpvATPase B was Bt Cry8Ea3 receptor protein. 【Conclusion】 HpvATPase B protein was identified as the receptor protein of Bt Cry8Ea3 through a series of in vitro binding assays, immunofluorescence analyses, and cytotoxicity evaluations. This protein plays a crucial role in mediating the toxic effects of Bt Cry8Ea3 on H. parallela larvae.

Key words: Holotrichia parallela, V-ATPase B, Bacillus thuringiensis, Cry8Ea3 toxin, ELISA, immunofluorescence analysis, cytotoxicity

Table 1

The primer sequences used in this study"

引物名称 Primers name 引物序列 Primer sequence (5′-3′) 作用 Function
HpvATPase B-F1 CG GGATCCGCTGTGTTGAACTGTTGTAT 原核表达
Prokaryotic expression
HpvATPase B-R CCC AAGCTTGGGATAGAATTCTGCCAT
HpvATPase B-F2 GGATCCGGCTGTGTTGAACTGTTGTAT 真核表达
Eukaryotic expression
HpvATPase B-R CCC AAGCTTGGGATAGAATTCTGCCAT
qvATPase B-F TGGCGTAAATGGACCTCT 组织表达
Tissue expression
qvATPase B-R CAATACCCGATGTTCCCTC
Actin-F ATGTTGCCATCCAAGCTGTA
Actin-R CCAAACGCAAAATAGCATGA
M13-F CGCCAGGGTTTTCCCAGTCACGAC 重组Sf9细胞黏粒检测
Detection of recombinant cosmid in Sf9 cells
M13-R CACACAGGAAACAGCTATGAC

Fig. 1

Phylogenetic tree of V-ATPase B amino acid sequences of H. parallela and other Coleoptera species"

Fig. 2

Verification of pET30a-HpvATPase B and detection of prokaryotic expression products of HpvATPase B protein A:重组表达载体pET30a-HpvATPase B酶切验证Verification of recombinant vector pET30a-HpvATPase B。M:λ-EcoT14 I digest Marker;1:HpvATPase B;2:pET30a;3:pET30a-HpvATPase B/BamH I&Hind III;4:pET30a-HpvATPase B/Hind III。B:重组表达载体pET30a-HpvATPase B在大肠杆菌BL21(DE3)中的表达Expression of recombinant expression vector pET30a-HpvATPase B in a bacterial system E. coli BL21 (DE3)。M:蛋白Marker Protein Marker;1:未经IPTG诱导Not induced by IPTG;2—4:HpvATPase B分别经IPTG诱导4、6、8 h HpvATPase B was induced by IPTG for 4, 6, 8 h, respectively。C:重组蛋白HpvATPase B的纯化Purification of recombinant protein HpvATPase B。M:预染Marker Prestained Marker;1:未经IPTG诱导Not induced by IPTG;2—4:HpvATPase B分别经IPTG诱导4、6、8 h HpvATPase B was induced by IPTG for 4, 6, 8 h, respectively"

Fig. 3

Expression levels of HpvATPase B in different tissues of H. parallela The different lowercases on the bars indicate that the analysis of variance is significantly different at the 0.05 level"

Fig. 4

Ligand blot analysis of Bt Cry8Ea3 and HpvATPase B protein A:Cry8Ea3活性蛋白的检测Detection of Cry8Ea3 active protein。M:蛋白Marker Protein Marker;1:Cry8Ea3原毒素Cry8Ea3 protoxin;2:Cry8Ea3活性蛋白Cry8Ea3 active protein。B:BBMV与Cry8Ea3的Ligand blot分析Ligand blot analysis of BBMV and Cry8Ea3。M:预染Marker Prestained Marker;1:BBMV与Cry8Ea3的Ligand blot分析Ligand blot analysis of BBMV and Cry8Ea3。红色箭头表示结合范围大小,依次为70、40—60、35 kDa The red arrow indicates the size of the combination range, which is about 70, 40-60 and 35 kDa;2:BBMV未与Cry8Ea3孵育BBMV not incubated with Cry8Ea3。C:HpvATPase B与Cry8Ea3、Cry1Ab35的Ligand blot分析Ligand blot analysis of HpvATPase B and Cry8Ea3, Cry1Ab35。M:预染Marker Prestained Marker;1:HpvATPase B与Cry8Ea3孵育Incubate HpvATPase B with Cry8Ea3;2:HpvATPase B未与Cry1Ab35孵育HpvATPase B not incubated with Cry1Ab35"

Fig. 5

Determination of affinity between HpvATPase B and Cry8Ea3"

Fig. 6

Identification of recombinant vector pFastBacTM HTA-HpvATPase B by enzyme digestion and the expression of HpvATPase B protein in Sf9 cells A:重组载体pFastBacTM HTA-HpvATPase B酶切Enzyme digestion of recombinant vector pFastBacTM HTA-HpvATPase B。M:λ-EcoT14 I digest Marker;1:pFastBacTM HTA;2:HpvATPase B PCR产物PCR product of HpvATPase B;3:pFastBacTM HTA-HpvATPaseB/BamH I&Hind III;4:pFastBacTM HTA-HpvATPase B/Hind III。B:重组Bacmid PCR鉴定PCR identification of recombinant Bacmid。M:DL5000;1:pFastBacTM HTA-HpvATPase B。C:P2代病毒电泳检测Electrophoresis detection of P2。M:DL5000 Marker;1:pFastBacTM HTA对照扩增产物pFastBacTM HTA control amplification product;2:pFastBacTM HTA-HpvATPase B扩增产物pFastBacTM HTA-HpvATPase B amplification product。D:HpvATPase B蛋白在Sf9细胞的表达Expression of HpvATPase B protein in Sf9 cells。M:预染Marker Prestained Marker;1:P3对照(仅含pFastBacTM HTA)P3 control (pFastBacTM HTA only);2:P3转基因细胞(含pFastBacTM HTA-HpvATPase-B)P3 transgenic cells (containing pFastBacTM HTA-HpvATPase-B)"

Fig. 7

Combination of HpvATPase B to Cry8Ea3 toxin protein in Sf9 cells"

Fig. 8

Cytotoxicity of different concentrations of Cry8Ea3 toxin protein to trans-HpvATPase B Sf9 cells"

[1]
LI E T, ZHANG S, LI K B, NYAMWASAA I, LI J Q, LI X F, QIN J H, YIN J. Efficacy of entomopathogenic nematode and Bacillus thuringiensis combinations against Holotrichia parallela (Coleoptera: Scarabaeidae) larvae. Biological Control, 2021, 152: 104469.
[2]
刘思雨, 薛锐, 陈斌, 杜广祖, 李正跃, 肖关丽. 黄绿绿僵菌Ma130821对暗黑鳃金龟幼虫的室内毒力及毒杀作用研究. 环境昆虫学报, 2018, 40(6): 1429-1436.
LIU S Y, XUE R, CHEN B, DU G Z, LI Z Y, XIAO G L. Study on the virulence and toxicity efficacy of Metarhizium flavoviride Ma130821 against the larvae of Holotrichia parallela Motschulsky in laboratory. Journal of Environmental Entomology, 2018, 40(6): 1429-1436. (in Chinese)
[3]
赵庆雷, 信彩云, 王瑜, 阴筱, 刘奇华, 林香青. 不同轮作模式对花生病虫害及产量的影响. 植物保护学报, 2018, 45(6): 1321-1327.
ZHAO Q L, XIN C Y, WANG Y, YIN X, LIU Q H, LIN X Q. Effects of different rotation patterns on peanut diseases, pests and yield. Journal of Plant Protection, 2018, 45(6): 1321-1327. (in Chinese)
[4]
王伟. 暗黑鳃金龟中肠Cry8Ea3特异性结合蛋白的鉴定及结合特性研究[D]. 保定: 河北农业大学, 2017.
WANG W. Identification and binding characteristics of Cry8Ea3 specific binding protein in the midgut of the Holotrichia parallela[D]. Baoding: Hebei Agricultural University, 2017. (in Chinese)
[5]
ABAD A R, DUCK N B, FENG X, FLANNAGAN R D, KAHN T W, SIMS L E. Genes encoding novel proteins with pesticidal activity against coleopterans: US2002151709A1[P]. (2002-10-17) [2025-01-13].
[6]
BEL Y, FERRÉ J, HERNÁNDEZ-MARTÍNEZ P. Bacillus thuringiensis toxins: Functional characterization and mechanism of action. Toxins, 2020, 12(12): 785.
[7]
DOMÍNGUEZ-ARRIZABALAGA M, VILLANUEVA M, ESCRICHE B, ANCÍN-AZPILICUETA C, CABALLERO P. Insecticidal activity of Bacillus thuringiensis proteins against coleopteran pests. Toxins, 2020, 12(7): 430.
[8]
JIN T T, DUAN X L, BRAVO A, SOBERON M, WANG Z Y, HE K L. Identification of an alkaline phosphatase as a putative Cry1Ac binding protein in Ostrinia furnacalis (Guenée). Pesticide Biochemistry and Physiology, 2016, 131: 80-86.
[9]
XIE C, XIONG L, YE M, SHEN L L, LI J G, ZHANG Z, YOU M S, YOU S J. Genome-wide analysis of V-ATPase genes in Plutella xylostella (L.) and the potential role of PxVHA-G1 in resistance to Bacillus thuringiensis Cry1Ac toxin. International Journal of Biological Macromolecules, 2022, 194: 74-83.
[10]
段云鹏, 姚雪, 李品, 王萌涵, 胡守印, 胡恩静, 刘永刚, 杨淑芳, 魏纪珍. 棉铃虫V-ATPase亚基B是Cry1Ac的功能受体. 中国生物防治学报, 2022, 38(5): 1094-1102.

doi: 10.16409/j.cnki.2095-039x.2022.09.005
DUAN Y P, YAO X, LI P, WANG M H, HU S Y, HU E J, LIU Y G, YANG S F, WEI J Z. V-ATPase subunit B is a functional receptor of Cry1Ac in Helicoverpa armigera (Lepidoptera: Noctuidae). Chinese Journal of Biological Control, 2022, 38(5): 1094-1102. (in Chinese)
[11]
NELSON N, PERZOV N, COHEN A, HAGAI K, PADLER V, NELSON H. The cellular biology of proton-motive force generation by V-ATPases. The Journal of Experimental Biology, 2000, 203(1): 89-95.
[12]
袁向东, 张万娜, 赵曼, 梁革梅. 甜菜夜蛾中肠碱性磷酸酶alp2基因的克隆、表达及功能分析. 植物保护学报, 2017, 44(1): 8-15.
YUAN X D, ZHANG W N, ZHAO M, LIANG G M. Cloning, expression and functional analysis of alkaline phosphatase 2 (alp2) in the midgut of beet armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Journal of Plant Protection, 2017, 44(1): 8-15. (in Chinese)
[13]
常梦颖, 赵丹, 张雅昆, 徐畅, 陆秀君, 郭巍. 美国白蛾中肠碱性磷酸酶HcALP1与苏云金杆菌3种Bt蛋白的体外结合特性分析. 蚕业科学, 2019, 45(3): 331-337.
CHANG M Y, ZHAO D, ZHANG Y K, XU C, LU X J, GUO W. In vitro binding characteristics of Hyphantria cunea midgut HcALP1 with three kinds of Bacillus thuringiensis Cry toxins. Acta Sericologica Sinica, 2019, 45(3): 331-337. (in Chinese)
[14]
胡硕, 何玉英, 李健, 张海恩, 韩旭. 中国对虾V-ATPase c亚基基因的克隆及其在高pH胁迫下的表达分析. 中国水产科学, 2019, 26(6): 1064-1074.
HU S, HE Y Y, LI J, ZHANG H E, HAN X. Cloning and expression analysis of V-ATPase c subunit gene under high pH stress in Fenneropenaeus chinensis. Journal of Fishery Sciences of China, 2019, 26(6): 1064-1074. (in Chinese)
[15]
MO D, CHEN Y, JIANG N, SHEN J, ZHANG J. Investigation of isoform specific functions of the V-ATPase a subunit during Drosophila wing development. Frontiers in Genetics, 2020, 11: 723.
[16]
SHI X, LIU X, COOPER A M, SILVER K, MERZENDORFER H, ZHU K Y, ZHANG J. Vacuolar (H+)-ATPase subunit c is essential for the survival and systemic RNA interference response in Locusta migratoria. Pest Management Science, 2022, 78(4): 1555-1566.
[17]
J, GUO M, CHEN S, NOLAND J E, GUO W, SANG W, QI Y, QIU B, ZHANG Y, YANG C, PAN H. Double-stranded RNA targeting vATPase B reveals a potential target for pest management of Henosepilachna vigintioctopunctata. Pesticide Biochemistry and Physiology, 2020, 165: 104555.
[18]
GUO W, GUO M, YANG C, LIU Z, CHEN S, J, QIU B, ZHANG Y, ZHOU X, PAN H. RNA interference-mediated silencing of vATPase subunits A and E affect survival and development of the 28-spotted ladybeetle, Henosepilachna vigintioctopunctata. Insect Science, 2021, 28(6): 1664-1676.

doi: 10.1111/1744-7917.12899 pmid: 33421334
[19]
WANG X, ZHAO D, WANG Q, LIU Y, LU X, GUO W. Identification and functional analysis of V-ATPase A and C genes in Hyphantria cunea. Insects, 2024, 15(7): 515.
[20]
LI H, KHAJURIA C, RANGASAMY M, GANDRA P, FITTER M, GENG C, WOOSELY A, HASLER J, SCHULENBERG G, WORDEN S, MCEWAN R, EVANS C, SIEGFRIED B, NARVA K E. Long dsRNA but not siRNA initiates RNAi in western corn rootworm larvae and adults. Journal of Applied Entomology, 2015, 139(6): 432-445.
[21]
王梦珂, 赵特, 周琳, 杜鹏强, 刘向阳, 郭线茹. 棉铃虫V-ATP酶G亚基基因克隆及相对表达量分析. 植物保护学报, 2020, 47(1): 205-206.
WANG M K, ZHAO T, ZHOU L, DU P Q, LIU X Y, GUO X R. Cloning and relative expression level of vacuolar-type proton ATPase G subunit gene in the cotton bollworm Helicoverpa armigera. Journal of Plant Protection, 2020, 47(1): 205-206. (in Chinese)
[22]
QIU L, ZHANG B, LIU L, MA W, WANG X, LEI C, CHEN L. Proteomic analysis of Cry2Aa-binding proteins and their receptor function in Spodoptera exigua. Scientific Reports, 2017, 7: 40222.
[23]
CANDAS M, LOSEVA O, OPPERT B, KOSARAJU P, BULLA L A. Insect resistance to Bacillus thuringiensis: Alterations in the Indianmeal moth larval gut proteome. Molecular and Cellular Proteomics, 2003, 2(1): 19-28.
[24]
BAYYAREDDY K, ANDACHT T M, ABDULLAH M A, ADANG M J. Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae. Insect Biochemistry and Molecular Biology, 2009, 39(4): 279-286.
[25]
FU K Y, GUO W C, LV F G, LIU X P, LI G Q. Response of the vacuolar ATPase subunit E to RNA interference and four chemical pesticides in Leptinotarsa decemlineata (Say). Pesticide Biochemistry and Physiology, 2014, 114: 16-23.
[26]
TANAKA S, ENDO H, ADEGAWA S, KIKUTA S, SATO R. Functional characterization of Bacillus thuringiensis Cry toxin receptors explains resistance in insects. The FEBS Journal, 2016, 283(24): 4474-4490.
[27]
LI X, MIYAMOTO K, TAKASU Y, WADA S, IIZUKA T, ADEGAWA S, SATO R, WATANABE K. ATP-binding cassette subfamily a member 2 is a functional receptor for Bacillus thuringiensis Cry2A Toxins in Bombyx mori, but not for Cry1A, Cry1C, Cry1D, Cry1F, or Cry9A toxins. Toxins, 2020, 12(2): 104.
[28]
GAO M J, DONG S, HU X D, ZHANG X, LIU Y, ZHONG J F, LU L, WANG Y, CHEN L M, LIU X J. Roles of midgut cadherin from two moths in different Bacillus thuringiensis action mechanisms: Correlation among toxin binding, cellular toxicity, and synergism. Journal of Agricultural and Food Chemistry, 2019, 67(48): 13237-13246.
[1] HONG RunJing, ZHOU Hong, LIN HuiXing, FAN HongJie. Establishment and Application of Sandwich ELISA Method for Detecting Lawsonia intracellularis [J]. Scientia Agricultura Sinica, 2025, 58(5): 1032-1042.
[2] XU ChongXin, JIN JiaFeng, SUN XiaoMing, SHEN Cheng, ZHANG Xiao, CHEN ChengYu, LIU XianJin, LIU Yuan. Rational Design and Innovative Application Strategy for the Insecticidal Protein Based on Bt Toxin [J]. Scientia Agricultura Sinica, 2024, 57(1): 96-125.
[3] ZHANG PengYun, CHEN Min, LIU MingXing, ZHOU Hong, LIN HuiXing, FAN HongJie. Development and Application of Indirect ELISA Kits for Antibody Detection of Haemophilus parasuis [J]. Scientia Agricultura Sinica, 2023, 56(8): 1606-1614.
[4] GUO Kui, ZHANG ZeNan, WANG YaoXin, LI ShuaiJie, CHU XiaoYu, GUO Wei, HU Zhe, WANG XiaoJun. Development and Application of a Mab-Based iELISA for the Detection of Antibodies Against African Horse Fever Virus [J]. Scientia Agricultura Sinica, 2023, 56(16): 3237-3246.
[5] GUO Kui, ZHANG ZeNan, LI ShuaiJie, CHU XiaoYu, WANG YaoXin, GUO Wei, HU Zhe, WANG XiaoJun. Development and Application of a Universal iELISA Antibody Assay for Abortion-Causing Salmonella in Equidae [J]. Scientia Agricultura Sinica, 2023, 56(12): 2421-2430.
[6] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[7] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
[8] YuXin LIANG,JianXiang WU,XiaoYu LI,ChunYu ZHANG,JiChao HOU,XuePing ZHOU,YongZhi WANG. Mapping of Epitopes and Establishment of Rapid DAS-ELISA for Potato Virus Y Coat Protein [J]. Scientia Agricultura Sinica, 2021, 54(6): 1154-1162.
[9] FU ChaoRan, LI YaZi, WU Han, ZHAO Dan, GUO Wei, GUO XiaoChang. Cloning, Expression and Functional Analysis of SeDuox from Spodoptera exigua [J]. Scientia Agricultura Sinica, 2021, 54(18): 3881-3891.
[10] Xiao WEI,Qi ZHANG,Wen ZHANG,Hui LI,PeiWu LI. Improving the Sensitivity of ELISA by Large-Capacity Reaction System of Aflatoxigenic Fungi-Biomarker in Agro-products [J]. Scientia Agricultura Sinica, 2020, 53(7): 1473-1481.
[11] HuiMin HU,XueFeng PAN,Heng YANG,Chen CHEN,YinJi CHEN. Wheat Gluten, Gliadins and Glutenin Content Changes During Germination Based on the Methods of R5 ELISA and RP-HPLC [J]. Scientia Agricultura Sinica, 2020, 53(6): 1247-1255.
[12] YANG Jun,CHU PinPin,SONG Shuai,CAI RuJian,YANG DongXia,BIAN ZhiBiao,GOU HongChao,LI Yan,JIANG ZhiYong,LI ChunLing,YAN He. Construction of lpxM Gene Deletion Strain of Haemophilus parasuis and It's Some Biological Characteristics [J]. Scientia Agricultura Sinica, 2020, 53(16): 3394-3403.
[13] CHEN Lin,WEI JiZhen,LIU Chen,NIU LinLin,ZHANG CaiHong,LIANG GeMei. Effect of Midgut Specific Binding Protein ABCC1 on Cry1Ac Toxicity Against Helicoverpa armigera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3337-3345.
[14] WANG Fang, FENG Yu, ZHANG Ge, JIANG Hui, ZHU Liang-quan, DING Jia-bo. Development of Indirect ELISA for Antibody of Brucella abortus [J]. Scientia Agricultura Sinica, 2016, 49(9): 1818-1825.
[15] SHEN Lin-lin, ZOU Wen-chao, GAO Fang-luan, ZHAN Jia-sui. Strain Composition of Potato virus Y in Fujian Province Detected with the Concatenated Sequence Approach [J]. Scientia Agricultura Sinica, 2016, 49(20): 3918-3926.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!