Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (15): 3232-3240.doi: 10.3864/j.issn.0578-1752.2021.15.008

• PLANT PROTECTION • Previous Articles     Next Articles

An Investigation into Key Factors Influencing the Occurrence of Virus Disease in Sweet Potato

ZHAO FuMei(),WANG Shuang,TIAN YuTing,QIAO Qi,WANG YongJiang,ZHANG DeSheng,ZHANG ZhenChen()   

  1. Institute of Plant Protection, Henan Academy of Agricultural Sciences/Henan Key Laboratory of Crop Pest Control/IPM Key Laboratory in Southern Part of North China, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002
  • Received:2020-11-25 Accepted:2021-02-07 Online:2021-08-01 Published:2021-08-10
  • Contact: ZhenChen ZHANG E-mail:woshifumei@163.com;zhangzhenchen@126.com

Abstract:

【Objective】 This study aimed to clarify the relationship between sweet potato virus types in storage roots and virus incidence and severity on root sprouts, and the relationship between numbers and SPCSV-carrying rate of Bemisia tabaci and SPCSV-carrying rate of storage roots, establish the prediction method and early warning technology for viral disease in sweet potato seedlings, so as to provide the theoretical basis for virus-free storage root production, and prevention and control of virus disease in sweet potato.【Method】 PCR and RT-PCR were performed to detect eight major sweet potato viruses including sweet potato feathery mottle virus (SPFMV), sweet potato virus C (SPVC), sweet potato virus G (SPVG), sweet potato latent virus (SPLV) and sweet potato virus 2 (SPV2) in the genus of Potyvirus, sweet potato chlorotic stunt virus (SPCSV) in the genus of Crinivirus, cucumber mosaic virus (CMV) in the genus of Cucumovirus, and sweepoviruses in the genus of Begomovirus in China in storage roots collected from different sources. The PCR-detected roots were planted in plastic pots and allowed to sprout under greenhouse conditions. The types and severity scores of viral symptoms on root sprouts were surveyed and recorded to analyze the relationship between virus species in roots and virus symptom severity on root sprouts. Virus-eliminated sweet potato cultivar Shangshu 19 (S19) plants with the same source were cultivated in the different locations in Henan, Ningxia and Shaanxi in 2018 and 2019. The number of B. tabaci in each test site was calculated by using yellow sticky traps, and was sampled for SPCSV detection during the growth period of sweet potato. The roots selected randomly from each test site were used for SPCSV detection after harvesting to analyze the relationship between numbers and SPCSV-carrying rate of B. tabaci and SPCSV-carrying rate of storage roots.【Result】 Of the 665 storage roots, 463 were infected with one or more of the eight viruses. After root sprouting, visual symptoms, such as leaf chlorosis, vein-clearing, rugosity and stunting were observed on the 333 root sprouts. Virus severity scores on root sprouts ranged from 0 to 1 (60.6% for score of 0 and 31.8% for score of 1) when roots were infected with potyvirus (es). Virus severity scores on root sprouts ranged from 0 to 1 (55.3% for score of 0 and 32.9% for score of 1) when roots were infected with sweepoviruses or co-infected with sweepoviruses and potyvirus (es). Root sprouts were observed with more severe symptoms when roots carried SPCSV, especially the combination of SPCSV and potyvirus (es), which caused visible symptoms on all sprouts with severity scores from 3 to 9 (49.0% for scores of 3 and 5, 51.0% for scores of 7 and 9). Results from two successive years field trial revealed that there was a positive correlation between SPCSV-carrying rate (X1) and numbers (X2) of B. tabaci and SPCSV-carrying rate (Y) of storage roots, and the equation of linear regression was Y=9.628X1+0.008X2+6.537, R2=0.914.【Conclusion】 Storage root carrying SPCSV is the key factor for serious occurrence of sweet potato viruses at seedling stage. Viral symptom appearance rate and severity scores increase significantly when roots are co-infected with SPCSV and potyvirus (es). There is a positive correlation between SPCSV-carrying rate and numbers of B. tabaci and SPCSV-carrying rate of storage roots, indicating that B. tabaci is the key factor influencing the SPCSV-carrying rate of storage root.

Key words: virus disease of sweet potato, storage root, Bemisia tabaci, sweet potato chlorotic stunt virus (SPCSV), forecast

Table 1

Primer sequences used for PCR analysis"

目标病毒 Target virus 引物名称 Primer 引物序列 Primer sequence (5′- 3′) 片段大小 Expected size (nt)
Sweepoviruses SweepoCP-F1 ACTTCGAGACAGCTATCGTGC 645
SweepoCP-R1 ATAYACAGGATTRCTAGCATG
SPFMV SPFMV-F1 TGGGGTTATGATGAACTTCTTC 400
SPFMV-R1 TTCTGGAATGRYTGCGGGTTG
SPCSV SPCSV-F1 TGGGAAGAMGAGAYATGGAG 573
SPCSV-R1 GAGCGTTCCTTTTCATCATC
CMV CMR3-N50 CGCAGGTGGTTAACGGT 697
CMR3-C30 CCA CACGGTAGAATCAAAT
SPVG SPVG-F1 GCAGGAAAAACAGGAAACAC 792
SPVG-R1 ATACCTCGGCATGTATGCCTT
SPLV SPLV-F1 AATGCCAAGGCTACAAGGAGT 553
SPLV-R1 CAAGTAGTGTGTGTATGTTCC
SPV2 SPV2-F1 TGAACCAGTGCATAGATTGG 770
SPV2-R1 TTCACACCTTCATACCATGC
SPVC SPVC-F1 GGACGAACAATGAAAGTTGG 600
SPVC-R1 CACTTTCCTGTAATCTGCTG

Table 2

PCR and RT-PCR detection of viruses on storage roots of sweet potato"

批次
Batch number
年份
Year
种薯来源
Location
种薯块数(个)
Number of storage roots
每种病毒检出数量 Number of virus detected
Sweepoviurses SPCSV SPFMV SPVG SPLV SPV2 SPVC CMV
1 2017 河南原阳县
Yuanyang, Henan
15 3 5 1
2 24 3 12 9 1 1 1
3 44 40 38 27
4 2017 河南襄城县
Xiangcheng, Henan
92 12 85 18 8 6 1
5 2018 河南原阳县
Yuanyang, Henan
50 33 10 22 1 5
6 56 30 17 32 9 6 12
7 2018 河南延津县
Yanjin, Henan
80 7 20 12 11
8 88 13 37 27 4 20 1
9 44 6 21 7 1 2 2 4 1
10 2018 河南襄城县
Xiangcheng, Henan
91 7 63 23 5 8 2
11 2018 宁夏银川市
Yinchuan, Ningxia
81 12 14 2 1
总计Total 665 154 320 191 24 14 12 62 4
比率Ratio (%) 23.2 48.1 28.7 3.6 2.1 1.8 9.3 0.6

Table 3

Relationship between virus infection status and virus disease severity on root sprouts"

种薯上病毒侵染类型
Virus infection status on storage roots
种薯块数(个)
Number of storage roots
各级显症薯苗的比例
Ratio of root sprouts with different virus symptom severities (%)
0 1 3-5 7-9
None 202 96.0 3.0 1.0 0
Potyvirus (es) 66 60.6 31.8 7.6 0
Sweepoviruses or sweepoviruses+potyvirus (es) 76 55.3 32.9 11.8 0
SPCSV 142 30.9 29.6 29.6 9.9
SPCSV+sweepoviruses 28 14.3 25.0 46.4 14.3
SPCSV+potyvirus (es) 149 0 0 49.0 51.0
SPCSV+CMV 1 0 0 - 0
CMV 1 0 0 - 0

Table 4

Relationship between number and SPCSV-carrying rate of B. tabaci and SPCSV-carrying rate of storage roots in 2018"

试验地点
Test site
经纬度
Geographic location
9月28日平均烟粉虱数量(头/黄板)
Mean number of B. tabaci
烟粉虱SPCSV带毒率
SPCSV-carrying rate of B. tabaci (%)
种薯SPCSV带毒率
SPCSV-carrying rate of storage roots (%)
原阳试验点 Yuanyang N35°0′35″,E113°42′31″ 276.2 3.0 30.4
延津试验点 Yanjin N35°15′56″,E114°11′57″ 376.8 4.0 47.7
银川试验点 Yinchuan N38°25′55″,E106°02′28″ 80.6 0 14.8

Table 5

Relationship between number and SPCSV-carrying rate of B. tabaci and SPCSV-carrying rate of storage roots in 2019"

试验点
Test site
经纬度
Geographic location
平均烟粉虱数量(头/黄板)
Mean number of B. tabaci
烟粉虱SPCSV带毒率
SPCSV-carrying rate of B. tabaci (%)
烟粉虱平均带毒率
Mean SPCSV- carrying rate of B. tabaci (%)
种薯SPCSV带毒率
SPCSV-carrying rate of storage roots (%)
8月9日
August
9th
8月29日
August
29th
9月27日
September 27th
8月9日
August
9th
8月29日
August
29th
9月27日
September 27th
原阳试验点1 Yuanyang 1 N35°0′35″,E113°42′31″ 739.0 5461.2 2398.6 7 0 17 8.0 96.0
原阳试验点2 Yuanyang 2 N35°0′25″,E113°41′28″ 380.6 2966.8 4772.2 3 0 5 2.7 74.0
延津试验点1 Yanjin 1 N35°16′27″,E114°12′41″ 941.0 2850.0 2236.4 3 2 5 3.3 38.0
延津试验点2 Yanjin 2 N35°15′56″,E114°11′57″ 384.0 3286.0 1229.8 2 4 12 6.0 92.0
温县试验点 Wenxian N35°01′35″,E113°05′17″ 1973.0 5098.4 2980.0 1 3 3 2.3 56.0
银川试验点 Yinchuan N38°25′55″,E106°02′28″ 0 537.2 0 0 0 0 0 10.0
榆林试验点
Yulin
N38°29′34″,E109°30′04″ 0 0 0 0 0 0 0 0
[1] CLARK C A, DAVIS J A, ABAD J A, CUELLAR W J, FUENTES S, KREUZE J F, GIBSON R W, MUKASA S B, TUGUME A K, TAIRO F D, VALKONEN J P T. Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Disease, 2012, 96(2):168-185.
doi: 10.1094/PDIS-07-11-0550
[2] FAOSTAT. Food and Agricultural Data. [2020-11-23]. http://www.fao.org/faostat/en/#data/QC/visualize.
[3] GU Y H, TAO X, LAI X J, WANG H Y, ZHANG Y Z. Exploring the polyadenylated RNA virome of sweet potato through high-throughput sequencing. PLoS ONE, 2014, 9(6):e98884.
doi: 10.1371/journal.pone.0098884
[4] WANJALA B W, ATEKA E M, MIANO D W, LOW J W, KREUZE J F. Storage root yield of sweetpotato as influenced by sweetpotato leaf curl virus and its interaction with sweetpotato feathery mottle virus and sweetpotato chlorotic stunt virus in Kenya. Plant Disease, 2020, 104(5):1477-1486.
doi: 10.1094/PDIS-06-19-1196-RE
[5] 王林生, 马晓玉. 甘薯脱毒技术的研究与应用. 种子, 2005, 24(10):51-53.
WANG L S, MA X Y. Research and application of virus-free technique on sweet potato. Seed, 2005, 24(10):51-53. (in Chinese)
[6] JO Y, KIM S M, CHOI H, YANG J W, LEE B C, CHO W K. Sweet potato viromes in eight different geographical regions in Korea and two different cultivars. Scientific Reports, 2020, 10:2588.
doi: 10.1038/s41598-020-59518-x
[7] 黄利利, BINHDAN P, 何芳练, 刘奕君, 刘义明, 陈保善, 廖咏梅. 广西甘薯病毒病的病原病毒种类检测. 基因组学与应用生物学, 2016, 35(5):1213-1218.
HUANG L L, BINHDAN P, HE F L, LIU Y J, LIU Y M, CHEN B S, LIAO Y M. The pathogenic virus species detection of sweet potato viral diseases in Guangxi. Genomics and Applied Biology, 2016, 35(5):1213-1218. (in Chinese)
[8] 李华伟, 刘中华, 张鸿, 李国良, 林赵淼, 邱思鑫. 福建甘薯病毒病病原鉴定及主要病毒多样性. 微生物学通报, 2019, 46(12):3267-3277.
LI W H, LIU Z H, ZHANG H, LI G L, LIN Z M, QIU S X. Identification and genetic diversity analysis of sweet potato virus in Fujian Province. Microbiology China, 2019, 46(12):3267-3277. (in Chinese)
[9] LIU Q L, WANG Y J, ZHANG Z C, LV H, QIAO Q, QIN Y H, ZHANG D S, TIAN Y T, WANG S, LI J Q. Diversity of sweepoviruses infecting sweet potato in China. Plant Disease, 2017, 101(12):2098-2103.
doi: 10.1094/PDIS-04-17-0524-RE
[10] MA S, ZHENG Q, YE J, FENG W, ZHOU G, ZHANG T. Identification of viruses infecting sweet potato in southern China by small RNA deep sequencing and PCR detection. Journal of General Plant Pathology, 2019, 85(2):122-127.
doi: 10.1007/s10327-018-0832-1
[11] 姜珊珊, 谢礼, 吴斌, 辛相启, 陈剑平, 赵玖华. 山东甘薯主要病毒的鉴定及多样性分析. 植物保护学报, 2017, 44(1):93-102.
JIANG S S, XIE L, WU B, XIN X Q, CHEN J P, ZHAO J H. Identification and genetic diversity analysis on sweet potato viruses in Shandong Province. Journal of Plant Protection, 2017, 44(1):93-102. (in Chinese)
[12] 乔奇, 张振臣, 张德胜, 秦艳红, 田雨婷, 王永江. 中国甘薯病毒种类的血清学和分子检测. 植物病理学报, 2012, 42(1):10-16.
QIAO Q, ZHANG Z C, ZHANG D S, QIN Y H, TIAN Y T, WANG Y J. Serological and molecular detection of viruses infecting sweet potato in China. Acta Phytopathologica Sinica, 2012, 42(1):10-16. (in Chinese)
[13] XIE Y P, XING J Y, LI X Y, WANG X, SUN H J, ZHAO Y Q, ZHANG C L, MA D F. Survey of sweetpotato viruses in China. Acta Virologica, 2013, 57(1):81-84.
pmid: 23530828
[14] 秦艳红, 王永江, 王爽, 乔奇, 田雨婷, 张德胜, 张振臣. 甘薯羽状斑驳病毒O株系和RC株系中国分离物全基因组序列分析及其遗传特征. 中国农业科学, 2020, 53(11):2207-2218.
QIN Y H, WANG Y J, WANG S, QIAO Q, TIAN Y T, ZHANG D S, ZHANG Z C. Complete nucleotide sequence analysis and genetic characterization of the sweet potato feathery mottle virus O and RC strains isolated from China. Scientia Agricultura Sinica, 2020, 53(11):2207-2218. (in Chinese)
[15] FAUQUET C M, STANLEY J. Geminivirus classification and nomenclature: Progress and problems. Annals of Applied Biology, 2003, 142(2):165-189.
doi: 10.1111/aab.2003.142.issue-2
[16] ZERBINI F M, BRIDDON R W, IDRIS A, MARTIN D P, MORIONES E, NAVAS-CASTILLO J, RIVERA-BUSTAMANTE R, ROUMAGNAC P, VARSANI A. ICTV virus taxonomy profile: Geminiviridae. Journal of General Virology, 2017, 98(2):131-133.
doi: 10.1099/jgv.0.000738
[17] VALVERDE R A, CLARK C A, VALKONEN J P T. Viruses and virus disease complexes of sweetpotato. Plant Viruses, 2007, 1(1):116-126.
[18] GAO F, GONG Y, ZHANG P. Production and deployment of virus-free sweetpotato in China. Crop Protection, 2000, 19(2):105-111.
doi: 10.1016/S0261-2194(99)00085-X
[19] 张振臣. 我国甘薯脱毒种薯种苗繁育存在的问题及建议. 植物保护, 2020, 46(6):10-13.
ZHANG Z C. Problems and suggestions for breeding of virus-free sweet potato seed in China. Plant Protection, 2020, 46(6):10-13. (in Chinese)
[20] OGERO K O, KREUZE J F, MCEWAN M A, LUAMBANO N D, BACHWENKIZI H, GARRETT K A, ANDERSEN K F, THOMAS-SHARMA S, VAN DER VLUGT R A A. Efficiency of insect-proof net tunnels in reducing virus-related seed degeneration in sweet potato. Plant Pathology, 2019, 68(8):1472-1480.
doi: 10.1111/ppa.v68.8
[21] ADIKINI S, MUKASA S B, MWANGA R O M, GIBSON R W. Virus movement from infected sweetpotato vines to roots and reversion on root sprouts. HortScience, 2019, 54(1):117-124.
doi: 10.21273/HORTSCI13392-18
[22] UNTIVEROS M, FUENTES S, SALAZAR L F. Synergistic interaction of sweet potato chlorotic stunt virus (Crinivirus) with carla-, cucumo-, ipomo-, and potyviruses infecting sweet potato. Plant Disease, 2007, 91(6):669-676.
doi: 10.1094/PDIS-91-6-0669
[23] CUELLAR W J, GALVEZ M, FUENTES S, TUGUME J, KREUZE J. Synergistic interactions of begomoviruses with sweet potato chlorotic stunt virus (genus Crinivirus) in sweet potato (Ipomoea batatasβL.). Molecular Plant Pathology, 2015, 16(5):459-471.
doi: 10.1111/mpp.2015.16.issue-5
[24] KARYEIJA R F, GIBSON R W, VALKONEN J P T. The significance of sweet potato feathery mottle virus in subsistence sweet potato production in Africa. Plant Disease, 1998, 82(1):4-15.
doi: 10.1094/PDIS.1998.82.1.4
[25] 褚栋, 张友军. 近10年我国烟粉虱发生为害及防治研究进展. 植物保护, 2018, 44(5):51-55.
CHU D, ZHANG Y J. Research progress on the damages and management of Bemisia tabaci (Gennadius) in China over the past 10 years. Plant Protection, 2018, 44(5):51-55. (in Chinese)
[26] CHU D, WAN F H, ZHANG Y J, BROWN J K. Change in the biotype composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008. Environmental Entomology, 2010, 39(3):1028-1036.
doi: 10.1603/EN09161
[27] JIU M, HU J, WANG L J, DONG J F, SONG Y Q, SUN H Z. Cryptic species identification and composition of Bemisia tabaci (Hemiptera: Aleyrodidae) complex in Henan Province, China. Journal of Insect Science, 2017, 17(3):78.
[28] WANG Z, YAN H, YANG Y, WU Y. Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. Pest Management Science, 2010, 66(12):1360-1366.
doi: 10.1002/ps.v66:12
[29] YUAN L, WANG S, ZHOU J, DU Y, ZHANG Y, WANG J. Status of insecticide resistance and associated mutations in Q-biotype of whitefly, Bemisia tabaci, from eastern China. Crop Protection, 2012, 31(1):67-71.
doi: 10.1016/j.cropro.2011.09.017
[30] PAN H, CHU D, YAN W, SU Q, LIU B, WANG S, WU Q, XIE W, JIAO X, LI R, YANG N, YANG X, XU B, BROWN J K, ZHOU X, ZHANG Y. Rapid spread of tomato yellow leaf curl virus in China is aided differentially by two invasive whiteflies. PLoS ONE, 2012, 7(4):e34817.
doi: 10.1371/journal.pone.0034817
[31] 赫尔 R. 马修斯植物病毒学. 4版. 范在丰, 李怀方, 韩成贵, 李大伟, 译. 北京: 科学出版社, 2007: 746.
HULL R. MATTHEWS’ Plant Virology. 4th eds. FAN Z F, LI H F, HAN C G, LI D W, trans. Beijing: Science Press, 2007: 746. (in Chinese)
[32] 仲乃琴, 蔡冬清, 赵盼. 我国高原马铃薯种薯产业发展与精准扶贫. 中国科学院院刊, 2020, 35(10):1308-1313.
ZHONG N Q, CAI D Q, ZHAO P. Development of potato seed industry and targeted poverty alleviation in plateau of China. Bulletin of Chinese Academy of Sciences, 2020, 35(10):1308-1313. (in Chinese)
[33] 范宏伟, 宋雄儒, 魏兴国. 河西走廊沿山冷凉灌区马铃薯品种比较试验. 中国马铃薯, 2015, 29(2):71-74.
FAN H W, SONG X R, WEI X G. Comparative trial of potato varieties in cold irrigated area in Hexi corridor. Chinese Potato Journal, 2015, 29(2):71-74. (in Chinese)
[34] 李爱贤, 张立明, 王庆美, 王登良, 解备涛, 秦桢, 候夫云, 董顺旭. “东种西繁”种薯繁育模式对甘薯病毒病发生的影响. 山东农业科学, 2019, 51(12):87-90.
LI A X, ZHANG L M, WANG Q M, WANG D L, XIE B T, QIN Z, HOU F Y, DONG S X. Effect of root seeds of east breeding in west China on occurrence of sweet potato virus disease. Shandong Agricultural Sciences, 2019, 51(12):87-90. (in Chinese)
[1] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[2] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[3] XU ShiWei,DI JiaYing,LI GanQiong,ZHUANG JiaYu. The Methodology and Application of Agricultural Monitoring and Early Warning Model Cluster [J]. Scientia Agricultura Sinica, 2020, 53(14): 2859-2871.
[4] ZHANG YongLing, JIANG MengZhou, YU PeiShi, YAO Qing, YANG BaoJun, TANG Jian. Agricultural Pest Identification Based on Multi-Feature Fusion and Sparse Representation [J]. Scientia Agricultura Sinica, 2018, 51(11): 2084-2093.
[5] TianBo DING, XiaoBei LIU, Jie LI, KeKe WEI, Dong CHU. Development of a Real-Time Fluorescent Quantitative PCR Method for the Detection of Tomato chlorosis virus and Its Application [J]. Scientia Agricultura Sinica, 2018, 51(10): 2013-2022.
[6] TANG ZhongHou, ZHANG AiJun, CHEN XiaoGuang, JIN Rong, LIU Ming, LI HongMin, DING YanFeng. Starch Physico-Chemical Properties and Their Difference in Three Sweetpotato (Ipomoea batatas(L.) Lam) Genotypes Under Low Potassium Stress [J]. Scientia Agricultura Sinica, 2017, 50(3): 513-525.
[7] TANG Zhong-Hou-1, 2 , WEI Meng-1, CHEN Xiao-Guang-1, SHI Xin-Min-1, ZHANG Ai-Jun-1, LI Hong-Min-1, DING Yan-Feng-2. Characters and Comprehensive Evaluation of Nutrient Quality of Sweetpotato Storage Root with Different Flesh Colors [J]. Scientia Agricultura Sinica, 2014, 47(9): 1705-1714.
[8] CHANG Xiao-Li, WU Xiang-Wen, DU Xing-Bin, CHEN Hai-Xia, LU Shuang, WANG Dong-Sheng, YUAN Yong-Da, ZHANG Tian-Shu, TENG Hai-Yuan. Evaluation of the Forecasting and Controlling Effects of the Yellow Sticky Card on the Rice Leaffolder (Cnaphalocrocis medinalis) [J]. Scientia Agricultura Sinica, 2013, 46(13): 2677-2684.
[9] SHI Chun-Yu, YAO Hai-Lan, ZHANG Li-Ming, LIU Hong-Juan, ZHANG Chao, LIU Gui-Ling. Starch Granule Size Distribution in Storage Roots of Different Types of Sweetpotato Cultivars [J]. Scientia Agricultura Sinica, 2011, 44(21): 4537-4543.
[10] XU Shi-Wei, LI Zhe-Min, LI Gan-Qiong, DONG Xiao-Xia. Advances in Research of Short-Term Forecasting Methods of Agricultural Product Price [J]. Scientia Agricultura Sinica, 2011, 44(17): 3666-3675.
[11] . Effects of Virus-eliminating and Plant Growth Regulators Ttreatment on the Endogenous Level of Hormone and Root Yield of Sweetpotato [J]. Scientia Agricultura Sinica, 2007, 40(1): 70-77 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!