Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (5): 823-843.doi: 10.3864/j.issn.0578-1752.2014.05.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Current Status of Transgenic Technologies for Safety Consideration in Plants and Future Perspectives

 WANG  Gen-Ping, DU  Wen-Ming, XIA  Lan-Qin   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081
  • Received:2013-08-22 Online:2014-03-01 Published:2013-12-20

Abstract: Genetic modification (GM) facilitates research into fundamental questions of plant functional genomics and provides a route for developing novel commercial varieties. Agrobacterium-mediated transformation and microparticle bombardment are two widely used methods for plants genetic transformation. Since the first commercial planting of GM crop in 1996, the planting area of GM crops has reached 170 million hectares in 28 countries and regions in 2012. Along with the increased commercialization and planting of a range of GM crops globally, the biosafety of GM crops has become a hot topic and major public concern. Development of the precise and marker-free transgenic technologies would be essential for the commercialization of transgenic crops. In this article, current development status of biosafe and precise transgenic technologies such as the use of selective markers avoidable of biosafety concerns, marker gene deletion and gene pyramiding, the method of control transgene flow as well as target genome editing and integration technologies are reviewed thoroughly. According to the selection principle, four classifications of biosafe selective marker genes have been explored so far such as marker genes related to carbohydrates metabolism, amino acids metabolism, auxins metabolism and abiotic stresses. Compared with antibiotic and herbicide resistant marker genes, the use of these marker genes and their products may not raise any biosafety concerns. Marker gene deletion and gene pyramiding includes co-transformation, site-specific recombination, transposon, intrachromosomal homologous recombination and gene stacking-based site-specific recombination. Among them, co-transformation includes Agrobacterium-mediated co-transformation and microparticle bombardment mediated co-transformation of gene expression cassettes. Gene deletion and stacking technology is essential for production of GM crops with improved complex traits, and gene stacking technology based on site-specific recombination system is expected to become an important technology for producing GM crops with multiple transgenes. The methods for control of transgene flow include chloroplast transformation and transgene split system. Target genome editing and integration technologies include ZFNs, TALEN and CRISPR/Cas9 mediated technologies. Among these three technologies, TALEN and CRISPR/Cas9 technologies are expected to become a powerful tool in future because of their advantages of simple design and operation, low cost and wide range of targets existing in plant genome. At last, future perspectives and applications of these transgenic technologies for safety consideration in agricultural practice are proposed.

Key words: genetic modified (GM) plants , selection marker , marker gene deletion , gene pyramiding , chloroplast transformation , transgene split technology , target genome editing and integration

[1]James C. Global status of commercialized biotech/GM crops: 2012. International Service for the Acquisition of Agri-biotech Applications, 2013, ISAAA Brief No. 44

[2]Xia L Q, Ma Y Z, He Y, Jones H D. GM wheat development in China: Current status and challenges to commercialization. Journal of Experimental Botany, 2012, 63(5): 1785-1790.

[3]符勇耀, 杨迎伍, 邓伟, 李正国. 安全标记基因在转基因植物中的应用. 生物技术通报, 2008(6): 24-29.

Fu Y Y, Yang Y W, Deng W, Li Z G. Safe marker genes and its application in plant transformation. Biotechnology Bulletin, 2008(6): 24-29. (in Chinese)

[4]Gadaleta A, Giancaspro A, Blechl A, Blanco A. Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation. Journal of Cereal Science, 2006, 43(1): 31-37.

[5]He Z Q, Fu Y P, Si H M, Hu G C, Zhang S H, Yu Y H, Sun Z X. Phosphomannose-isomerase (pmi) gene as a selectable marker for rice transformation via Agrobacterium. Plant Science, 2004, 166(1): 17-22.

[6]Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Reports, 2001, 20(5): 429-436.

[7]Joersbo M, Donaldson I, Kreiberg J, Petersen S G, Brunstedt J, Okkels F T. Analysis of mannose selection used for transformation of sugar beet. Molecular Breeding, 1998, 4(2): 111-117.

[8]Sonntag K, Wang Y P, Wallbraun M. A transformation method for obtaining marker-free plants based on phosphomannose isomerase. Acta Universitatis Latviensis. Biology, 2004, 676: 223-226.

[9]Zhang P, Potrykus I, Puonti-Kaerlas J. Efficient production of transgenic cassava using negative and positive selection. Transgenic Research, 2000, 9(6): 405-415.

[10]Miki B, Mchugh S. Selectable marker genes in transgenic plants: Applications, alternatives and biosafety. Journal of Biotechnology, 2004, 107(3): 193-232.

[11]Haldrup A, Petersen S G, Okkels F T. Positive selection: A plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Reports, 1998, 18(1): 76-81.

[12]Guo X M, Zhang X D, Liang R Q, Zhang L Q, Chen Y F. Maize transformation using xylose isomerase gene as a selection marker. Journal of Plant Physiology and Molecular Biology, 2007, 33(6): 547.

[13]Morawala P V, Rajyashri K R. Novel efficient transformation method for sunflower and oil seeds based on positive selection. WO Patent 2007/080440, 2007.

[14]Lafayette P R, Kane P M, Phan B H, Parrott W A. Arabitol dehydrogenase as a selectable marker for rice. Plant Cell Reports, 2005, 24(10): 596-602.

[15]Kunze I, Ebneth M, Heim U, Geiger M, Sonnewald U, Herbers K. 2-Deoxyglucose resistance: A novel selection marker for plant transformation. Molecular Breeding, 2001, 7(3): 221-227.

[16]Sonnewald U, Ebneth M. 2-deoxyglucose-6-phosphate (2-DOG-6-P) phosphatase DNA sequences as selection marker in plants. WO Patent 1998/045456, 1998.

[17]Perl A, Galili S, Shaul O, Ben-Tzvi I, Galili G. Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: Two novel selectable markers for plant transformation. Nature Biotechnology, 1993, 11(6): 715-718.

[18]Brinch Pedersen H, Olsen O, Knudsen S, Holm P B. An evaluation of feed-back insensitive aspartate kinase as a selectable marker for barley (Hordeum vulgave L.) transformation. Hereditas, 1999, 131(3): 239-245.

[19]Kawagishi-Kobayashi M, Yabe N, Tsuchiya M, Harada S, Kobayashi T, Komeda Y, Kyo W. Rice OASA1D, a mutant anthranilate synthase α subunit gene, is an effective selectable marker for transformation of Arabidopsis thaliana. Plant Biotechnology, 2005, 22(4): 271-276.

[20]Ebmeier A, Allison L, Cerutti H, Clemente T. Evaluation of the Escherichia coli threonine deaminase gene as a selectable marker for plant transformation. Planta, 2004, 218(5): 751-758.

[21]Erikson O, Hertzberg M, Nasholm T. A conditional marker gene allowing both positive and negative selection in plants. Nature Biotechnology, 2004, 22(4): 455-458.

[22]Erikson O, Hertzberg M, Näsholm T. The dsdA gene from Escherichia coli provides a novel selectable marker for plant transformation. Plant Molecular Biology, 2005, 57(3): 425-433.

[23]Endo S, Kasahara T, Sugita K, Matsunaga E, Ebinuma H. The isopentenyl transferase gene is effective as a selectable marker gene for plant transformation in tobacco (Nicotiana tabacum cv. Petite Havana SRI). Plant Cell Reports, 2001, 20(1): 60-66.

[24]Endo S, Sugita K, Sakai M, Tanaka H, Ebinuma H. Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. The Plant Journal, 2002, 30(1): 115-122.

[25]Ebinuma H, Sugita K, Matsunaga E, Yamakado M. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proceedings of the National Academy of Sciences of the USA, 1997, 94(6): 2117-2121.

[26]Kunkel T, Niu Q, Chan Y, Chua N. Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nature Biotechnology, 1999, 17(9): 916-919.

[27]Zuo J R, Niu Q W, Ikeda Y, Chua N H. Marker-free transformation: increasing transformation frequency by the use of regeneration- promoting genes. Current Opinion in Biotechnology, 2002, 13(2): 173-180.

[28]Banno H, Chua N H. ESR1-a plant gene that can promote plant regeneration and transformation. WO Patent 2002/000903, 2002.

[29]Khan R S, Thirukkumaran G, Nakamura I, Mii M. Rol (root loci) gene as a positive selection marker to produce marker-free Petunia hybrida. Plant Cell, Tissue and Organ Culture, 2010, 101(3): 279-285.

[30]Joersbo M, Okkels F T. A novel principle for selection of transgenic plant cells: positive selection. Plant Cell Reports, 1996, 16(3/4): 219-221.

[31]Snyder G W, Ingersoll J C, Smigocki A C, Owens L D. Introduction of pathogen defense genes and a cytokinin biosynthesis gene into sugarbeet (Beta vulgaris L.) by Agrobacterium or particle bombardment. Plant Cell Reports, 1999, 18(10): 829-834.

[32]Shi H Z, Lee B H, Wu S J, Zhu J K. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 2002, 21(1): 81-85.

[33]Zhu Z G, Wu R. Regeneration of transgenic rice plants using high salt for selection without the need for antibiotics or herbicides. Plant Science, 2008, 174(5): 519-523.

[34]Zhang W J, Yang S S, Shen X Y, Jin Y S, Zhao H J, Wang T. The salt-tolerance gene rstB can be used as a selectable marker in plant genetic transformation. Molecular Breeding, 2009, 23(2): 269-277.

[35]Mcknight T D, Lillis M T, Simpson R B. Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Molecular Biology, 1987, 8(6): 439-445.

[36]Framond A J, Back E W, Chilton W S, Kayes L, Chilton M D. Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation. Molecular and General Genetics, 1986, 202(1): 125-131.

[37]Poirier Y, Ventre G, Nawrath C. High-frequency linkage of co-expressing T-DNA in transgenic Arabidopsis thaliana transformed by vacuum-infiltration of Agrobacterium tumefaciens. Theoretical and Applied Genetics, 2000, 100(3): 487-493.

[38]Block M, Debrouwer D. Two T-DNA's co-transformed intoBrassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theoretical and Applied Genetics, 1991, 82(3): 257-263.

[39]Daley M, Knauf V C, Summerfelt K R, Turner J C. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Reports, 1998, 17(6): 489-496.

[40]Afolabi A S, Worland B, Snape J, Vain P. Novel pGreen/pSoup dual-binary vector system in multiple T-DNA co-cultivation as a method of producing marker-free (clean gene) transgenic rice (Oriza sativa L.) plant. African Journal of Biotechnology, 2005, 4(6): 531-540.

[41]Matthews P R, Wang M B, Waterhouse P M, Thornton S, Fieg S J, Gubler F, Jacobsen J V. Marker gene elimination from transgenic barley, using co-transformation with adjacent twin T-DNAs' on a standard Agrobacterium transformation vector. Molecular Breeding, 2001, 7(3): 195-202.

[42]Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao Z Y. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Research, 2002, 11(4): 381-396.

[43]Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. The Plant Journal, 1996, 10(1): 165-174.

[44]Mccormac A C, Fowler M R, Chen D F, Elliott M C. Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Research, 2001, 10(2): 143-155.

[45]Huang S S, Gilbertson L A, Adams T H, Malloy K P, Reisenbigler E K, Birr D H, Snyder M W, Zhang Q, Luethy M H. Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Research, 2004, 13(5): 451-461.

[46]Fu X D, Duc L T, Fontana S, Bong B B, Tinjuangjun P, Sudhakar D, Twyman R M, Christou P, Kohli A. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Research, 2000, 9(1): 11-19.

[47]Breitler J C, Labeyrie A, Meynard D, Legavre T, Guiderdoni E. Efficient microprojectile bombardment-mediated transformation of rice using gene cassettes. Theoretical and Applied Genetics, 2002, 104(4): 709-719.

[48]Zhao Y, Qian Q, Wang H Z, Huang D N. Co-transformation of gene expression cassettes via particle bombardment to generate safe transgenic plant without any unwanted DNA. In Vitro Cellular & Developmental Biology-Plant, 2007, 43(4): 328-334.

[49]Vidal J R, Kikkert J R, Donzelli B D, Wallace P G, Reisch B I. Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Reports, 2006, 25(8): 807-814.

[50]Romano A, Raemakers K, Bernardi J, Visser R, Mooibroek H. Transgene organisation in potato after particle bombardment-mediated co-transformation using plasmids and gene cassettes. Transgenic Research, 2003, 12(4): 461-473.

[51]Lowe B A, Prakash N S, Way M, Mann M T, Spencer T M, Boddupalli R S. Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Research, 2009, 18(6): 831-840.

[52]赵艳, 高振宇, 黄大年. 植物的MAR及其对转基因表达的效应. 遗传, 2001, 23(3): 281-284.

Zhao Y, Gao Z Y, Huang D N. MARs in plants and their effects on the transgene expression. Hereditas, 2001, 23(3): 281-284. (in Chinese)

[53]Fukuda Y. Characterization of matrix attachment sites in the upstream region of a tobacco chitinase gene. Plant Molecular Biology, 1999, 39(5): 1051-1062.

[54]Avramova Z, Bennetzen J L. Isolation of matrices from maize leaf nuclei: identification of a matrix-binding site adjacent to the Adh1 gene. Plant Molecular Biology, 1993, 22(6): 1135-1143.

[55]Spiker S, Thompson W F. Nuclear matrix attachment regions and transgene expression in plants. Plant Physiology, 1996, 110(1): 15-21.

[56]邓智年, 魏源文, 吕维莉, 李杨瑞. MAR序列介导野苋菜凝集素基因在白菜中的表达. 园艺学报, 2007, 34(2): 381-386.

Deng Z N, Wei Y W, Lü W L, Li Y R. Expression of Amaranthus viridis L. agglutinin mediated by matrix attachment region(MAR) sequence in transgenic Chinese cabbage. Acta Horticulturae Sinica, 2007, 34(2): 381-386. (in Chinese)

[57]Allen G C, Hall G E, Childs L C, Weissinger A K, Spiker S, Thompson W F. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. The Plant Cell, 1993, 5(6): 603-613.

[58]Geest A H, Hall G E, Spiker S, Hall T C. The β-phaseolin gene is flanked by matrix attachment regions. The Plant Journal, 1994, 6(3): 413-423.

[59]Tikhonov A P, Bennetzen J L, Avramova Z V. Structural domains and matrix attachment regions along colinear chromosomal segments of maize and sorghum. The Plant Cell, 2000, 12(2): 249-264.

[60]Slatter R E, Dupree P, Gray J. Scaffold-associated DNA region is located downstream of the pea plastocyanin gene. The Plant Cell, 1991, 11(3): 1239-1250.

[61]Nomura K, Saito W, Ono K, Moriyama H, Takahashi S, Inoue M, Masuda K. Isolation and characterization of matrix associated region DNA fragments in rice (Oryza sativa L.). Plant and Cell Physiology, 1997, 38(9): 1060-1068.

[62]Van Drunen C M, Oosterling R W, Keultjes G M, Weisbeek P J, van Driel R, Smeekens S C. Analysis of the chromatin domain organisation around the plastocyanin gene reveals an MAR-specific sequence element in Arabidopsis thaliana. Nucleic Acids Research, 1997, 25(19): 3904-3911.

[63]Ueda K, Xu Z J, Miyagi N, Ono M, Wabiko H, Masuda K, Inoue M. Isolation and characterization of a carrot nucleolar protein with structural and sequence similarity to the vertebrate PESCADILLO protein. Plant Science, 2013, 208: 83-92.

[64]Kurin H, Ola S, Lars S. Non-palindromic aatI sites of integrons are capable of site-specific recombination with one another and with secondary targets. Molecular Microbiology, 1997, 26(3): 441-453.

[65]Guo F, Gopaul D N, Van Duyne G D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature, 1997, 389: 40-46.

[66]Sternberg N, Hamilton D. Bacteriophage P1 site-specific recombination I. Recombination between loxP sites. Journal of Molecular Biology, 1981, 150(4): 467-486.

[67]Huang L C, Wood E A, Mcox M. A bacterial model system for chromosomal targeting. Nucleic Acids Research, 1991, 19(3): 443-448.

[68]Matsuzaki H, Nakajima R, Nishiyama J, Araki H, Oshima Y. Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. Journal of Bacteriology, 1990, 172(2): 610-618.

[69]Dale E C, Ow D W. Intra- and intramolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene, 1990, 91(1): 79-85.

[70]Sengupta S, Chakraborti D, Mondal H A, Das S. Selectable antibiotic resistance marker gene-free transgenic rice harbouring the garlic leaf lectin gene exhibits resistance to sap-sucking planthoppers. Plant Cell Reports, 2010, 29(3): 261-271.

[71]Coppoolse E R, de Vroomen M J, Roelofs D, Smit J, van Gennip F, Hersmus B J M, Nijkamp H J J, van Haaren M J J. Cre recombinase expression can result in phenotypic aberrations in plants. Plant Molecular Biology, 2003, 51(2): 263-279.

[72]Gleave A P, Mitra D S, Mudge S R, Morris B A M. Selectable marker-free transgenic plants without sexual crossing: Transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Molecular Biology, 1999, 40(2): 223-235.

[73]Kopertekh L, Jüttner G, Schiemann J. Site-specific recombination induced in transgenic plants by PVX virus vector expressing bacteriophage P1 recombinase. Plant Science, 2004, 166(2): 485-492.

[74]Zuo J R, Niu Q W, Møller S G, Chua N H. Chemical-regulated, site-specific DNA excision in transgenic plants. Nature Biotechnology, 2001, 19(2): 157-161.

[75]Luo K M, Duan H, Zhao D G, Zheng X L, Deng W, Chen Y Q, Stewart Jr C J, Mcavoy R, Jiang X N, Wu Y H, He A, Pei Y, Li Y. 'GM-gene-deletor': Fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnology Journal, 2007, 5(2): 263-274.

[76]Thomason L C, Calendar R, Ow D W. Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage φC31 site-specific recombination system. Molecular Genetics and Genomics, 2001, 265(6): 1031-1038.

[77]Thomson J G, Ow D W. Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis, 2006, 44(10): 465-476.

[78]Ow D W. Recombinase-mediated gene stacking as a transformation operating system. Journal of Integrative Plant Biology, 2011, 53(7): 512-519.

[79]Srivastava V, Anderson O D, Ow D W. Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proceedings of the National Academy of Sciences of the USA, 1999, 96(20): 11117-11121.

[80]Srivastava V, Ow D W. Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Molecular Biology, 2001, 46(5): 561-566.

[81]Yau Y Y, Wang Y J, Thomson J G, Ow D W. Method for Bxb1-mediated site-specific integration in planta. Plant Chromosome Engineering, 2011, 701: 147-166.

[82]Lin L, Liu Y G, Xu X P, Li B J. Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proceedings of the National Academy of Sciences of the USA, 2003, 100(10): 5962-5967.

[83]Ebinuma H, Sugita K, Matsunaga E, Yamakado M. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proceedings of the National Academy of Sciences of the USA, 1997, 94(6): 2117-2121.

[84]Goldsbrough A P, Lastrella C N, Yoder J I. Transposition mediated re–positioning and subsequent elimination of marker genes from transgenic tomato. Nature Biotechnology, 1993, 11(11): 1286-1292.

[85]Cotsaftis O, Sallaud C, Breitler J C, Meynard D, Greco R, Pereira A, Guiderdoni E. Transposon-mediated generation of T-DNA- and marker-free rice plants expressing a Bt endotoxin gene. Molecular Breeding, 2002, 10(3): 165-180.

[86]Zubko E, Scutt C, Meyer P. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nature Biotechnology, 2000, 18(4): 442-445.

[87]Müller A E, Kamisugi Y, Grüneberg R, Niedenhof I, Hörold R J, Meyer P. Palindromic sequences and A+T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. Journal of Molecular Biology, 1999, 291(1): 29-46.

[88]Galliano H, Müller A E, Lucht J M, Meyer P. The transformation booster sequence from Petunia hybrida is a retrotransposon derivative that binds to the nuclear scaffold. Molecular and General Genetics, 1995, 247(5): 614-622.

[89]Boynton J E, Gillham N W, Harris E H, Hosler J P, Johnson A M, Jones A R, Randolph-Anderson B L, Robertson D, Klein T M, Shark K B. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science, 1988, 240(4858): 1534-1538.

[90]Spörlein B, Streubel M, Dahlfeld G, Westhoff P, Koop H U. PEG-mediated plastid transformation: a new system for transient gene expression assays in chloroplasts. Theoretical and Applied Genetics, 1991, 82(6): 717-722.

[91]Venkateswarlu K, Nazar R N. Evidence for T-DNA mediated gene targeting to tobacco chloroplasts. Nature Biotechnology, 1991, 9(11): 1103-1105.

[92]Knoblauch M, Hibberd J M, Gray J C, van Bel A J. A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nature Biotechnology, 1999, 17(9): 906-909.

[93]晁岳恩, 吴政卿, 杨会民, 何宁, 杨攀. 11种植物psbA基因的密码子偏好性及聚类分析. 核农学报, 2011, 25(5): 927-932.

Chao Y E, Wu Z Q, Yang H M, He N, Yang P. Cluster analysis and usage bias studies on psbA genes from 11 plant species. Journal of Nucleic Agriculture Science, 2011, 25(5): 927-932. (in Chinese)

[94]巩智刚, 周海鹏, 徐芳, 韩晓玲, 王玉华. 叶绿体转化及其应用于作物改良研究的最新进展. 核农学报, 2012, 26(2): 288-294.

Gong Z G, Zhou H P, Xu F, Han X L, Wang Y H. Chloroplast genetic transformation and the latest progress of its application in crop improvement. Journal of Nucleic Agriculture Science, 2012, 26(2): 288-294. (in Chinese)

[95]Svab Z, Hajdukiewicz P, Maliga P. Stable transformation of plastids in higher plants. Proceedings of the National Academy of Sciences of the USA, 1990, 87(21): 8526-8530.

[96]Sidorov V A, Kasten D, Pang S Z, Hajdukiewicz P T, Staub J M, Nehra N S. Stable chloroplast transformation in potato: Use of green fluorescent protein as a plastid marker. The Plant Journal, 1999, 19(2): 209-216.

[97]Ruf S, Hermann M, Berger I J, Carrer H, Bock R. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nature Biotechnology, 2001, 19(9): 870-875.

[98]Singh A K, Verma S S, Bansal K C. Plastid transformation in eggplant (Solanum melongena L.). Transgenic Research, 2010, 19(1): 113-119.

[99]Lee S M, Kang K, Chung H, Yoo S H, Xu X M, Lee S B, Cheong J J, Daniell H, Kim M. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Molecules and Cells, 2006, 21(3): 401-410.

[100]Liu C W, Lin C C, Chen J J W, Tseng M J. Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Reports, 2007, 26: 1733-1744.

[101]Hou B K, Zhou Y H, Wan L H, Zhang Z L, Shen G F, Chen Z H, Hu Z M. Chloroplast transformation in oilseed rape. Transgenic Research, 2003, 12(1): 111-114.

[102]Kumar S, Dhingra A, Daniell H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiology, 2004, 136(1): 2843-2854.

[103]Kumar S, Dhingra A, Daniell H. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Molecular Biology, 2004, 56(2): 203-216.

[104]Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo J M, Tissot G. Generation of fertile transplastomic soybean. Plant Molecular Biology, 2004, 55(4): 479-489.

[105]Okumura S, Sawada M, Park Y W, Hayashi T, Shimamura M, Takase H, Tomizawa K. Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Research, 2006, 15(5): 637-646.

[106]王金辉, 李轶女, 倪丕冲, 王国增, 张志芳, 沈桂芳. 叶绿体转化体系研究进展. 生物技术通报, 2012(1): 1-6.

Wang J H, Li Y N, Ni P C, Wang G Z, Zhang Z F, Shen G F. Research of chloroplast transformation system. Biotechnology Bulletin, 2012(1): 1-6. (in Chinese)

[107]Wu H, Hu Z, Liu X Q. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proceedings of the National Academy of Sciences of the USA, 1998, 95(16): 9226-9231.

[108]Chin H G, Kim G D, Marin I, Mersha F, Evans Jr T C, Chen L X, Xu M Q, Pradhan S. Protein trans-splicing in transgenic plant chloroplast: Reconstruction of herbicide resistance from split genes. Proceedings of the National Academy of Sciences of the USA, 2003, 100(8): 4510-4515.

[109]Yang J J, Fox G C, Henry-Smith T V. Intein-mediated assembly of a functional β-glucuronidase in transgenic plants. Proceedings of the National Academy of Sciences of the USA, 2003, 100(6): 3513-3518.

[110]Kempe K, Rubtsova M, Gils M. Intein-mediated protein assembly in transgenic wheat: production of active barnase and acetolactate synthase from split genes. Plant Biotechnology Journal, 2009, 7(3): 283-297.

[111]Kim Y G, Cha J, S. C. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the USA, 1996, 93(3): 1156-1160.

[112]Rémy S, Tesson L, Ménoret S, Usal C, Scharenberg A M, Anegon I. Zinc-finger nucleases: A powerful tool for genetic engineering of animals. Transgenic Research, 2010, 19(3): 363-371.

[113]Bibikova M, Golic M, Golic K G, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002, 161(3): 1169-1175.

[114]Doyon Y, Mccammon J M, Miller J C, Faraji F, Ngo C, Katibah G E, Amora R, Hocking T D, Zhang L, Rebar E J, Gregory P D, Urnov F D, Amacher S L. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 2008, 26(6): 702-708.

[115]Geurts A M, Cost G J, Freyvert Y, Zeitler B, Miller J C, Choi V M, Jenkins S S, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis G D, Zhang L, Rebar E J, Gregory P D, Urnov F D, Jacob H J, Buelow R. Knockout rats via embryo microinjection of zinc-finger nucleases. Science, 2009, 325(5939): 433.

[116]Doyon J B, Zeitler B, Cheng J, Cheng A T, Cherone J M, Santiago Y, Lee A H, Vo T D, Doyon Y, Miller J C, Paschon D E, Zhang L, Rebar E J, Gregory P D, Urnov F D, Drubin D G. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nature Cell Biology, 2011, 13(3): 331-337.

[117]Lloyd A, Plaisier C L, Carroll D, Drews G N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 2005, 102(6): 2232-2237.

[118]Maeder M L, Thibodeau-Beganny S, Osiak A, Wright D A, Anthony R M, Eichtinger M, Jiang T, Foley J E, Winfrey R J, Townsend J A, Unger-Wallace E, Sander J D, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie J P, Pruett-Miller S M, Porteus M H, Sgroi D C, Iafrate A J, Dobbs D, McCray P B, Cathomen T, Voytas D F, Joung J K. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Molecular Cell, 2008, 31(2): 294-301.

[119]Cai C Q, Doyon Y, Ainley W M, Miller J C, Dekelver R C, Moehle E A, Rock J M, Lee Y, Garrison R, Schulenberg L, Blue R, Worden A, Baker L, Faraji F, Zhang L, Holmes M C, Rebar E J, Collingwood T N, Rubin-Wilson B, Gregory P D, Urnov F D, Petolino J F. Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Molecular Biology, 2009, 69(6): 699-709.

[120]Shukla V K, Doyon Y, Miller J C, Dekelver R C, Moehle E A, Worden S E, Mitchell J C, Arnold N L, Gopalan S, Meng X. Choi V M, Rock J M, Wu Y Y, Katibah G E, Gao Z, David M, Simpson M A, Blakeslee B, Greenwalt S A, Butler H J, Hinkley S J, Zhang L, Rebar E J, Gregory P D. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 2009, 459: 437-441.

[121]Carlson D F, Fahrenkrug S C, Hackett P B. Targeting DNA with fingers and TALENs. Molecular Therapy-Nucleic Acids, 2012, 1(1): e3.

[122]Bonas U, Stall R E, Staskawicz B. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Molecular and General Genetics, 1989, 218(1): 127-136.

[123]Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326(5959): 1509-1512.

[124]Moscou M J, Bogdanove A J. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326(5959): 1501.

[125]Scholze H, Boch J. TAL effectors are remote controls for gene activation. Current Opinion in Microbiology, 2011, 14(1): 47-53.

[126]Li T, Huang S, Zhao X F, Wright D A, Carpenter S, Spalding M H, Weeks D P, Yang B. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Research, 2011, 39(14): 6315-6325.

[127]Wood A J, Lo T, Zeitler B, Pickle C S, Ralston E J, Lee A H, Amora R, Miller J C, Leung E, Meng X, Zhang L, Rebar E J, Gregory P D, Urnov F D. Meyer B J. Targeted genome editing across species using ZFNs and TALENs. Science, 2011, 333(6040): 307.

[128]Miller J C, Tan S, Qiao G, Barlow K A, Wang J, Xia D F, Meng X, Paschon D E, Leung E, Hinkley S J, Dulay G P, Hua K L, Ankoudinova I, Cost G J, Urnov F D, Zhang H S. Holmes M C, Zhang L, Gregory P D, Rebar E J. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 2010, 29(2): 143-148.

[129]Sander J D, Cade L, Khayter C, Reyon D, Peterson R T, Joung J K, Yeh J J. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotechnology, 2011, 29(8): 697-698.

[130]Mahfouz M M, Li L X, Piatek M, Fang X Y, Mansour H, Bangarusamy D K, Zhu J K. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Molecular Biology, 2012, 78(3): 311-321.

[131]Li T, Liu B, Spalding M H, Weeks D P, Yang B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology, 2012, 30(5): 390-392.

[132]Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero D A, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315: 1709-1712.

[133]Marraffini L A, Sontheimer E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322(5909): 1843-1845. 

[134]Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327: 167-170.

[135]Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007, 8(1): 172.

[136]Karginov F V, Hannon G J. The CRISPR system: Small RNA-guided defense in bacteria and archaea. Molecular Cell, 2010, 37(1): 7-19.

[137]Haft D H, Selengut J, Mongodin E F, Nelson K E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 2005, 1(6): e60.

[138]Godde J S, Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes: Evidence of horizontal transfer among prokaryotes. Journal of Molecular Evolution, 2006, 62(6): 718-729.

[139]方锐, 畅飞, 孙照霖, 李宁, 孟庆勇. CRISPR/Cas9介导的基因组定点编辑技术. 生物化学与生物物理进展, 2013, 40(8): 691-702.

Fang R, Chang F, Sun Z L, Li N, Meng Q Y. New method of genome editing derived from CRISPR/Cas9. Progress in Biochemistry and Biophysics, 2013, 40(8): 691-702. (in Chinese)

[140]Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.

[141]Cong L, Ran F A, Cox D, Lin S L, Barretto R, Habib N, Hsu P D, Wu X B, Jiang W Y, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.

[142]Jiang W Y, Bikard D, Cox D, Zhang F, Marraffini L A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(3): 233-239.

[143]Dicarlo J E, Norville J E, Mali P, Rios X, Aach J, Church G M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 2013, 41(7): 4336-4343.

[144]Chang N N, Sun C H, Gao L, Zhu D, Xu X F, Zhu X J, Xiong J W, Jeff Xi J Z. Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos. Cell Research, 2013, 23(4): 465-472.

[145]Gratz S J, Cummings A M, Nguyen J N, Hamm D C, Donohue L K, Harrison M M, Wildonger J, O'Connor-Giles K M. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 2013, 195(4): 1029-1035.

[146]Friedland A E, Tzur Y B, Esvelt K M, Colaiácovo M P, Church G M, Calarco J A. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature Methods, 2013, 10(8): 741-743.

[147]Li D L, Qiu Z W, Shao Y J, Chen Y T, Guan Y T, Liu M Z, Li Y M, Gao N, Wang L R, Lu X L, Zhao Y X, Liu M Y. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8): 681-683.

[148]Nekrasov V, Staskawicz B, Weigel D, Jones J D, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31(8): 691-693.

[149]Li J F, Norville J E, Aach J, Mccormack M, Zhang D D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination- mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31(8): 688-691.

[150]Shan Q W, Wang Y P, Li J, Zhang Y, Chen K L, Liang Z, Zhang K, Liu J X, Jeff Xi J Z, Qiu J L, Gao C X. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8): 686-688.

[151]Qi L S, Larson M H, Gilbert L A, Doudna J A, Weissman J S, Arkin A P, Lim W A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5): 1173-1183.

[152]李君, 张毅, 陈坤玲, 单奇伟, 王延鹏, 梁振, 高彩霞. CRISPR/Cas系统: RNA 靶向的基因组定向编辑新技术. 遗传, 2013, 35(11): 1265-1273.

Li J, Zhang Y, Chen K L, Shan Q W, Wang Y P, Liang Z, Gao C X. CRISPR/Cas: A novel way of RNA-guided genome editing. Hereditas, 2013, 35(11): 1265-1273. (in Chinese)

[153]Wang H Y, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153: 910-918.

[154]Fu Y F, Foden J A, Khayter C, Maeder M L, Reyon D, Joung J K, Sander J D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9): 822-826.
[1] WU YunYu,XIAO Ning,YU Ling,CAI Yue,PAN CunHong,LI YuHong,ZHANG XiaoXiang,HUANG NianSheng,JI HongJuan,DAI ZhengYuan,LI AiHong. Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China [J]. Scientia Agricultura Sinica, 2021, 54(9): 1881-1893.
[2] LONG DingPei, HAO ZhanZhang, XIANG ZhongHuai, ZHAO AiChun. Current Status of Transgenic Technologies for Safety Consideration in Silkworm (Bombyx mori) and Future Perspectives [J]. Scientia Agricultura Sinica, 2018, 51(2): 363-373.
[3] . Establishment of a Gene Expression System in the Rice Chloroplast and Obtainment of PPT-resistant Rice Plants [J]. Scientia Agricultura Sinica, 2007, 40(9): 1849-1855 .
[4] . Construction of Site-specific Integration Vector of E2 gene of Hog Cholera Virus for Transformation of Chloroplast Genome of Lotus corniculatus [J]. Scientia Agricultura Sinica, 2007, 40(11): 2648-2654 .
[5] ,,,,. Development of Wheat Germplasms with Multi-Resistance to Powdery Mildew, Stripe Rust and Yellow Dwarf Virus by Molecular Marker-Assisted Selection [J]. Scientia Agricultura Sinica, 2005, 38(12): 2380-2386 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!