Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (1): 205-219.doi: 10.3864/j.issn.0578-1752.2026.01.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Prediction of the Potential Habitat Suitability of Luopanshan Pigs in Chongqing Based on the Optimized MaxEnt Model

ZHOU Qi1(), ZHANG ShiHao2(), ZHANG Liang1,3, PAN Yu1,3, ZHANG LiJuan1,3, TU Zhi1,3, PAN HongMei1,3, LONG Xi1,3,*()   

  1. 1 Chongqing Academy of Animal Science and Veterinary Medicine, Chongqing 402460
    2 School of Architecture and Urban Planning, Chongqing University, Chongqing 400030
    3 National Swine Technology Innovation Center, Chongqing 402460
  • Received:2025-06-25 Accepted:2025-08-28 Online:2026-01-01 Published:2026-01-07
  • Contact: LONG Xi

Abstract:

【Background】The Luopanshan pig, a rare indigenous breed native to Chongqing, is recognized as a key genetic resource at both national and regional levels. However, due to factors such as changes in breeding structures and outbreaks of African swine fever, its population has declined sharply, leading to a significant loss of genetic diversity. Urgent conservation measures are required to prevent its extinction. While in situ conservation remains the primary strategy, establishing ex situ conservation farms serves as a crucial supplementary approach to mitigate risks associated with habitat degradation and disease outbreaks. 【Objective】In accordance with the Measures for the Administration of Conservation Farms, Protected Areas, and Gene Banks for Livestock and Poultry Genetic Resources issued by the Ministry of Agriculture and Rural Affairs, ex-situ conservation farms should be established in locations where the natural ecological conditions closely match those of the breed’s original habitat. To facilitate the formulation of evidence-based strategies for the ex-situ conservation of the Luopanshan pig, this study aimed to identify potential areas within Chongqing Municipality that were environmentally suitable for its survival and reproduction. The findings were expected to provide a scientific basis for future conservation farm site selection and to support the sustainable development of large-scale breeding programs. 【Method】Utilizing 105 georeferenced occurrence records of Luopanshan pigs collected through field surveys in Chongqing, a Random Forest machine learning model via the scikit-learn library was employed to assess the relative importance of 16 environmental and anthropogenic variables, including soil properties (Available Phosphorus, Available Potassium, Available Nitrogen, Cation Exchange Capacity, Soil Organic Matter and Soil pH), land surface temperature, precipitation, digital elevation model, and STREAM. SHapley Additive exPlanations (SHAP) were used to quantify the marginal contribution of each variable to the model's predictions. Pearson correlation coefficients (PCC) were calculated to evaluate multicollinearity among variables, and variance inflation factors (VIF) were applied for further collinearity diagnostics. The refined set of variables and species occurrence data were then input into the Maximum Entropy Model (MaxEnt) model to predict habitat suitability and identify key environmental factors influencing the distribution of Luopanshan pigs. 【Result】The MaxEnt model achieved a high predictive performance, with an average Area Under the Curve (AUC) value of 0.995, indicating excellent model accuracy. The primary environmental factors influencing the habitat suitability of wild boars in Luopanshan, Chongqing, were precipitation (39.7%), pH (24.1%), available phosphorus(18.9%), land surface temperature (6.2%), and distance to buildings(5.7%), with a total contribution of 94.6%. Secondary environmental factors include available potassium(1.9%), digital elevation model(1.4%), STREAM(1.2%), cation exchange capacity(0.8%), and available nitrogen(0.1%), contributing 5.4% in total. Suitable habitats for Luopanshan pigs were predominantly scattered across Tongnan, Hechuan, Dazu, and Rongchang districts, encompassing a total area of 4 217.59 km2, which represented 5.1% of Chongqing's land area. Among these, highly suitable habitats covered 189.44 km2, notably in Xingsheng, Wofu, and Tangba towns of Tongnan District; Gaoping, Sanqu, Zhuxi, and Youting towns of Dazu District; Fenggao Subdistrict and Wanling Town of Rongchang District; Weixin Town of Tongliang District; and Chashan Zhuhai Subdistrict of Yongchuan District. Moderately suitable habitats spanned 554.97 km2, while low suitability areas covered 1 034.78 km2, and marginally suitable areas accounted for 2 438.39 km2. 【Conclusion】This study provided a scientific basis for the strategic planning of ex situ conservation farms for Luopanshan pigs in Chongqing. The methodology and findings also offered a reference framework for habitat suitability assessments and conservation management of other indigenous and rare livestock breeds.

Key words: Luopanshan pig, MaxEnt model, prediction of suitable habitat distribution, Chongqing City

Fig. 1

Population statistics of Luopanshan pigs from 1976 to 2022"

Table 1

Environmental factors used for constructing the initial model"

变量类型
Factors type
描述
Description
环境因子
Environmental factors
年降水量 Precipitation (PREC)
地表温度 Land surface temperature (LST)
速效钾 Available potassium (AK)
速效磷 Available phosphorus (AP)
速效氮 Available nitrogen (AN)
阳离子交换率 Cation exchange capacity (CEC)
有机质组成 Soil organic matter (SOM)
酸碱度 pH
坡度 Slope
高程 Digital elevation model (DEM)
归一化植被指数
Normalized difference vegetation index (NDVI)
人为因子
Human factor
距建筑物的距离 BUILDING
土地利用/覆盖 Land use and land cover (LULC)
人口密度 Population density (POP)
距道路的距离 ROAD
距水系的距离 STREAM

Table 2

Screening of factors by highly correlated variables"

高相关变量对
Highly correlated variable pairs
系数
Coefficient
处理方式
Process mode
AP-AN 0.86 保留AP Reserve AP
AK-AN 0.86 保留AK Reserve AK
AK-AP 1 保留AP Reserve AP
pH-AN 0.86 保留pH Reserve pH
pH-AP 1 保留AP Reserve AP
pH-AK 1 保留pH Reserve pH
CEC-AN 0.86 保留CEC Reserve CEC
CEC-AP 1 保留AP Reserve AP
CEC-AK 1 保留AK Reserve AK
CEC-pH 1 保留pH Reserve pH
STREAM-DEM 0.9 保留DEM Reserve DEM
ROAD-DEM 0.93 保留DEM Reserve DEM
ROAD-STREAM 0.98 保留STREAM Reserve STREAM

Fig. 2

Methodological framework for assessing the potential habitat suitability of Luopanshan pigs"

Fig. 3

Proportion of importance of each factor based on random forest algorithm"

Fig. 4

Factor SHAP analysis"

Fig. 5

Pearson correlation coefficient factor screening (16 factors)"

Fig. 6

Current status map of environmental factors"

Fig. 7

The ROC curve of the MaxEnt model for predicting the distribution of Luopanshan pigs in Chongqing"

Table 3

Main environmental factors affecting the potential habitat of Luopan mountain pigs in Chongqing and their contribution rates"

环境变量
Variable
贡献率
Contribution
(%)
排列重要性 Permutation importance
年降水量 PREC 39.7 73.3
酸碱度 pH 24.1 9.0
速效磷 AP 18.9 9.6
地表温度 LST 6.2 2.5
距建筑物的距离 BUILDING 5.7 0.6
速效钾 AK 1.9 2.2
高程 DEM 1.4 2.5
距水系的距离 STREAM 1.2 0.1
阳离子交换率 CEC 0.8 0.1
速效氮 AN 0.1 0.1

Fig. 8

Importance of environmental variables evaluated by Jackknife testing"

Fig. 9

Response curves of the main environmental factors influencing the potential habitat of Luopanshan pigs in Chongqing The curves show the mean response of the 10 replicate MaxEnt runs (red) and and the mean±one standard deviation (blue)"

Table 4

Geographical distribution of potential suitable habitat for Luopanshan pigs"

区县名称
Districts and Counties
高适生区
Highly suitable
habitat area
较高适生区
Moderately highly
suitable habitat area
区县名称
Districts and counties
高适生区
Highly suitable
habitat area
较高适生区
Moderately highly suitable habitat area
潼南区
Tongnan District
新胜镇 Xinsheng town 别口镇Biekou town 荣昌区
Rongchang District
峰高街道
Fenggao district
万灵镇 Wanling town
卧佛镇 Wofo town 小渡镇Xiaodu town 直升镇 Zhisheng town
塘坝镇 Tagba town 五桂镇 Wugui town
合川区
Hechuan
District
太和镇 Taihe District
渭沱镇 Weituo town 永川区
Yongchuan
District
双石镇 Shuangshi town 胜利路街道 Shengli Road district
三庙镇Sanmiao town 茶山竹海街道 Chashanzhuhai district 吉安镇Ji 'an town
朱沱镇 Zhuduo town 大安街道Da 'an district
铜梁区
Tonglian
District
维新镇 Weixin town 少云镇 Shaoyun 璧山区
Bishan
District
三合镇 Sanhe town 正兴镇 Zhengxing town
高楼镇Gaolou town
安居镇Anju town
大足区
Dazu
District
高坪镇 Gaoping town 宝兴镇 Baoxing town 江津区
Jiangjin
District
油溪镇Youxi town 慈云镇 Ciyun town
三驱镇 Sanqu town 龙石镇 Longshi town 白沙镇Baisha town 蔡家镇 Caijia town
珠溪镇 Zhuxi town 龙岗街道 Longgang District
[1]
邓娟. 湖川山地猪(罗盘山猪)的保护和开发利用. 中国猪业, 2013, 8(S1): 132-133.
DENG J. Protection,development and utilization of huchuan mountain pig (compass mountain pig). China Swine Industry, 2013, 8(S1): 132-133. (in Chinese)
[2]
陈燕. 罗盘山猪利用现状及发展思路. 中国畜禽种业, 2014, 10(8): 21.
CHEN Y. Utilization status and development ideas of Luopanshan pig. The Chinese Livestock and Poultry Breeding, 2014, 10(8): 21. (in Chinese)
[3]
周旗, 龙熙, 张亮, 涂志, 潘红梅, 邓娟, 王瑶, 任素碧, 孔莎莎, 王勇胜. 冻存对罗盘山猪成纤维细胞生物学特性的影响. 动物学杂志, 2025, 60(2): 247-262.
ZHOU Q, LONG X, ZHANG L, TU Z, PAN H M, DENG J, WANG Y, REN S B, KONG S S, WANG Y S. Effects of cryopreservation on the cellular characteristics of fibroblasts isolated from luopanshan pigs. Chinese Journal of Zoology, 2025, 60(2): 247-262. (in Chinese)
[4]
李建江, 宋锐, 牛葕洲, 林丽果. 我国畜禽遗传资源保护利用现状分析. 西北民族大学学报(自然科学版), 2015, 36(3): 16-21.
LI J J, SONG R, NIU Y Z, LIN L G. Analysis on the current situation of protection and utilization of livestock and poultry genetic resources in China. Journal of Northwest University for Nationalities (Natural Science), 2015, 36(3): 16-21. (in Chinese)
[5]
赵宁, 夏少霞, 于秀波, 段后浪, 李瑾璞, 陈亚恒. 基于MaxEnt模型的渤海湾沿岸鸻鹬类栖息地适宜性评价. 生态学杂志, 2020, 39(1): 194-205.
ZHAO N, XIA S X, YU X B, DUAN H L, LI J P, CHEN Y H. Habitat suitability assessment of shorebirds in Bohai Bay coast using MaxEnt Model. Chinese Journal of Ecology, 2020, 39(1): 194-205. (in Chinese)
[6]
韩依纹, 方铁树, 蒋韵, 殷利华, 万敏. 高密度城区野猪生境适宜性与“人猪冲突” 潜在风险区识别研究. 中国城市林业, 2024, 22(1): 16-24.
HAN Y W, FANG T S, JIANG Y, YIN L H, WAN M. A study of wild boar habitat suitability in high-density urban areas and identification of potential risk areas of “human-boar conflicts”. Journal of Chinese Urban Forestry, 2024, 22(1): 16-24. (in Chinese)
[7]
曾伟英, 王德智, 叶琛, 龚宇, 王昱熙, 张全发. 基于优化的MaxEnt模型对全国巨柏潜在分布的预测. 植物科学学报, 2025, 43(1): 52-62.
ZENG W Y, WANG D Z, YE C, GONG Y, WANG Y X, ZHANG Q F. Prediction of potential distribution of Cupressus gigantea W. C. Cheng & L. K. Fu in China based on optimized MaxEnt modeling. Plant Science Journal, 2025, 43(1): 52-62. (in Chinese)
[8]
WARNE R K, CHABER A L. Assessing disease risks in wildlife translocation projects: A comprehensive review of disease incidents. Animals, 2023, 13(21): 3379.

doi: 10.3390/ani13213379
[9]
许庆伟, 王洋, 李志琦, 罗博, 郭涛, 余海燕, 张杰, 王泽宇, 何勤天, 梁云栋, 叶思丽, 黄海洋, 石孝均, 张宇亭. 不同种植制度下施肥管理对紫色土的致酸效应. 植物营养与肥料学报, 2025, 31(3): 407-418.
XU Q W, WANG Y, LI Z Q, LUO B, GUO T, YU H Y, ZHANG J, WANG Z Y, HE Q T, LIANG Y D, YE S L, HUANG H Y, SHI X J, ZHANG Y T. Effects of fertilization management on acidification of purple soil under different cropping systems. Journal of Plant Nutrition and Fertilizers, 2025, 31(3): 407-418. (in Chinese)
[10]
孙平, 于鸿浩, 赵新全, 王德华. 青藏高原异地半圈养藏羚警戒行为的适应性研究. 动物学研究, 2011, 32(5): 561-565.
SUN P, YU H H, ZHAO X Q, WANG D H. Adaptation of vigilance behavior in ex situ conservation of Tibetan Antelope. Zoological Research, 2011, 32(5): 561-565. (in Chinese)
[11]
STEINFELD H, WASSENAAR T, JUTZI S. Livestock production systems in developing countries: status, drivers, trends. Revue Scientifique et Technique (International Office of Epizootics), 2006, 25(2): 505-516.
[12]
HO S M, JOHNSON A, TARAPORE P, JANAKIRAM V, ZHANG X, LEUNG Y K. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR Journal, 2012, 53(3/4): 289-305.

doi: 10.1093/ilar.53.3-4.289
[13]
LARSEN K, CHRISTENSEN T B, HØJBERG O, SØRENSEN M T. Exposure of pigs to glyphosate affects gene-specific DNA methylation and gene expression. Toxicology Reports, 2022, 9: 298-310.

doi: 10.1016/j.toxrep.2022.02.007 pmid: 35284244
[14]
QIU S N, FU H Y, ZHOU R Y, YANG Z, BAI G D, SHI B M. Toxic effects of glyphosate on intestinal morphology, antioxidant capacity and barrier function in weaned piglets. Ecotoxicology and Environmental Safety, 2020, 187: 109846.

doi: 10.1016/j.ecoenv.2019.109846
[15]
MACHA E S, MEYER L C R, LEIBERICH M, HOFMEYR M, HOOIJBERG E H. Promoting Rhinoceros welfare during transit: veterinarians' perspectives on transportation practices. Journal of the South African Veterinary Association, 2024. DOI:10.36303/JSAVA.670.
[16]
KIM Y J, SONG M H, LEE S I, LEE J H, OH H J, AN J W, CHANG S Y, GO Y B, PARK B J, JO M S, LEE C G, KIM H B, CHO J H. Evaluation of pig behavior changes related to temperature, relative humidity, volatile organic compounds, and illuminance. Journal of Animal Science and Technology, 2021, 63(4): 790-798.

doi: 10.5187/jast.2021.e89 pmid: 34447956
[17]
LAGUA E B, MUN H S, AMPODE K M B, PARK H R, SHARIFUZZAMAN M, HASAN M K, KIM Y H, YANG C J. Minimum carbon dioxide is a key predictor of the respiratory health of pigs in climate-controlled housing systems. Porcine Health Management, 2024, 10(1): 59.

doi: 10.1186/s40813-024-00408-3 pmid: 39707558
[18]
PATTERSON R, NEVEL A, DIAZ A V, MARTINEAU H M, DEMMERS T, BROWNE C, MAVROMMATIS B, WERLING D. Exposure to environmental stressors result in increased viral load and further reduction of production parameters in pigs experimentally infected with PCV2b. Veterinary Microbiology, 2015, 177(3/4): 261-269.

doi: 10.1016/j.vetmic.2015.03.010
[19]
GAO Z K, WANG R F, YANG Y, JIN S Y, WANG X Z, SUN Q Q, SHI K. Habitat suitability and relative abundance of wild boars in the east-central Tianshan Mountains, China. The Journal of Wildlife Management, 2025, 89(1): e22683.

doi: 10.1002/jwmg.v89.1
[20]
YANG G M, PENG C C, YANG X W, GUO Q Y, SU H J. Habitat suitability and crop damage risk caused by wild boar in Guizhou Plateau, China. The Journal of Wildlife Management, 2024, 88(3): e22542.

doi: 10.1002/jwmg.v88.3
[21]
KATWAL S, SINGH Y, BEDI J S, CHANDRA M, HONPARKHE M. Microbial dynamics and climatic interactions in pig sheds: Insights into airborne microbes and particulate matter concentrations. Environmental Monitoring and Assessment, 2024, 196(6): 511.

doi: 10.1007/s10661-024-12624-z pmid: 38703303
[22]
VILAS BOAS RIBEIRO B P, LANFERDINI E, PALENCIA J Y P, LEMES M A G, TEIXEIRA DE ABREU M L, DE SOUZA CANTARELLI V, FERREIRA R A. Heat negatively affects lactating swine: A meta-analysis. Journal of Thermal Biology, 2018, 74: 325-330.

doi: S0306-4565(18)30127-X pmid: 29801645
[23]
MARKOV N, PANKOVA N, MORELLE K. Where winter rules: Modeling wild boar distribution in its north-eastern range. Science of the Total Environment, 2019, 687: 1055-1064.

doi: 10.1016/j.scitotenv.2019.06.157
[24]
LEE O, SCHLICHTING P E, JO Y S. Habitat model for wild boar (Sus scrofa) in Bukhansan National Park, Seoul. Journal of Urban Ecology, 2022, 8(1): juac027.
[25]
LEUS K. Ex-situ conservation of wild pigs and peccaries:Roles, status, management successes and challenges. Ecology, Conservation and Management of Wild Pigs and Peccaries. Cambridge, UK: Cambridge University Press, 2017: 420-436.
[26]
ZHANG Y Q, MO C Y, PAN Y Q, YANG P B, DING X D, LEI Q, KANG P. Responses of soil microbial survival strategies and functional changes to wet-dry cycle events. Microorganisms, 2023, 11(11): 2783.

doi: 10.3390/microorganisms11112783
[27]
SCHLOSSER-BRANDENBURG J, MIDHA A, MUGO R M, NDOMBI E M, GACHARA G, NJOMO D, RAUSCH S, HARTMANN S. Infection with soil-transmitted helminths and their impact on coinfections. Frontiers in Parasitology, 2023, 2: 1197956.

doi: 10.3389/fpara.2023.1197956
[28]
SUN X, LIDDICOAT C, TIUNOV A, WANG B, ZHANG Y Y, LU C Y, LI Z P, SCHEU S, BREED M F, GEISEN S, ZHU Y G. Harnessing soil biodiversity to promote human health in cities. NPJ Urban Sustainability, 2023, 3: 5.

doi: 10.1038/s42949-023-00086-0
[29]
DEVAU N, LE CADRE E, HINSINGER P, JAILLARD B, GÉRARD F. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches. Applied Geochemistry, 2009, 24(11): 2163-2174.

doi: 10.1016/j.apgeochem.2009.09.020
[30]
HUMER E, SCHWARZ C, SCHEDLE K. Phytate in pig and poultry nutrition. Journal of Animal Physiology and Animal Nutrition, 2015, 99(4): 605-625.

doi: 10.1111/jpn.12258 pmid: 25405653
[31]
HASTAD C W, DRITZ S S, TOKACH M D, GOODBAND R D, NELSSEN J L, DEROUCHEY J M, BOYD R D, JOHNSTON M E. Phosphorus requirements of growing-finishing pigs reared in a commercial environment. Journal of Animal Science, 2004, 82(10): 2945-2952.

pmid: 15484946
[32]
SMITH L, SPARKS C, GABLER N K. 255 evaluation of growth performance and bone mineral density in grower pigs fed phosphorus, calcium, and vitamin D deficient diets. Journal of Animal Science, 2023, 101(Supplement_2): 156-157.
[33]
MOITA V H C, KIM S W. Efficacy of a bacterial 6-phytase supplemented beyond traditional dose levels on jejunal mucosa- associated microbiota, ileal nutrient digestibility, bone parameters, and intestinal health, and growth performance of nursery pigs. Journal of Animal Science, 2023, 101: skad134.
[34]
牛现琇. 日粮中添加植酸酶对猪磷营养的研究进展. 浙江畜牧兽医, 2025, 50(1): 11-12.
NIU X X. The research progress on adding phytase to the diet for phosphorus nutrition in pigs. Zhejiang Journal Animal Science and Veterinary Medicine, 2025, 50(1): 11-12. (in Chinese)
[35]
李笑然, 张丽阳, 廖秀冬, 马雪莲, 吕林, 罗绪刚. 我国畜禽饲料资源中矿物元素钾含量的调查研究. 动物营养学报, 2025, 37(1): 672-681.

doi: 10.12418/CJAN2025.058
LI X R, ZHANG L Y, LIAO X D, MA X L, L, LUO X G. Investigation and study on potassium contents in feed resources for livestock and poultry in China. Chinese Journal of Animal Nutrition, 2025, 37(1): 672-681. (in Chinese)

doi: 10.12418/CJAN2025.058
[36]
LAUTROU M, NARCY A, DOURMAD J Y, POMAR C, SCHMIDELY P, LÉTOURNEAU MONTMINY M P. Dietary phosphorus and calcium utilization in growing pigs: Requirements and improvements. Frontiers in Veterinary Science, 2021, 8: 734365.

doi: 10.3389/fvets.2021.734365
[37]
RENAUDEAU D, DOURMAD J Y. Review: Future consequences of climate change for European Union pig production. Animal, 2022, 16: 100372.

doi: 10.1016/j.animal.2021.100372
[38]
PRIBILOVA M, SKALICKOVA S, URBANKOVA L, BAHOLET D, NEVRKLA P, KOPEC T, SLAMA P, HORKY P. Monitoring of taurine dietary supplementation effect on parameters of Duroc boar ejaculate in summer season. PLoS ONE, 2024, 19(1): e0288317.
[39]
TAKAMI K. Approach to ex-situ conservation by zoos and aquariums. Japanese Journal of Zoo and Wildlife Medicine, 2019, 24(2): 49-57.

doi: 10.5686/jjzwm.24.49
[1] ZOU HengYu, GUO Xi, JIANG YeFeng, LI XiaoMao, CHEN Lin, BAI JiaQi. Evaluation of Planting Suitability of Geographical Indication Agricultural Products Based on Ecological Niche Model: The Case of Purple- Skinned Garlic in Shanggao County [J]. Scientia Agricultura Sinica, 2024, 57(18): 3586-3600.
[2] YANG JiangBo,ZHANG Ji,LI JunJie,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,HE ShaoLan,YI ShiLai. Effects of Nitrogen Application Levels on Nutrient, Yield and Quality of Tarocco Blood Orange and Soil Physicochemical Properties in the Three Gorges Area of Chongqing [J]. Scientia Agricultura Sinica, 2019, 52(5): 893-908.
[3] LIU Shao-jun, ZHOU Guang-sheng, FANG Shi-bo. Climatic Suitability Regionalization of Rubber Plantation in China [J]. Scientia Agricultura Sinica, 2015, 48(12): 2335-2345.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!