Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (22): 4757-4770.doi: 10.3864/j.issn.0578-1752.2025.22.015

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Characterization of Non-Volatile Metabolites of White Peony Tea Make of Camellia sinensis Fu’an-dabaicha from Different Origins

LUO Qin1(), CHEN XieYong2(), XU YuYing1, WEI Han1, HUANG Biao1, YAO QingHua1, YE NaiXing2, ZHENG DeYong3(), YAN MingJuan4()   

  1. 1 Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-Products Quality and Safety, Fuzhou 350003
    2 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002
    3 College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002
    4 Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou 350003
  • Received:2025-06-11 Accepted:2025-09-15 Online:2025-11-16 Published:2025-11-21
  • Contact: ZHENG DeYong, YAN MingJuan

Abstract:

【Objective】 This study aimed to explore the discrimination technology of the origin of small-region white peony tea based on non-volatile metabolite characteristics. 【Method】Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to determine the composition and content of non-volatile metabolites in white peony tea made of Camellia sinensis Fu’an-dabaicha varieties from three different production areas, including Zhenghe County (ZH), Songxi County (SX), and Fu’an City (FA). Combined with mathematical statistics methods, characteristic compounds were screened, and a discrimination model of the origin of white peony tea was constructed. 【Result】 After screening and filtering, 219 kinds of non-volatile metabolites were identified in the white peony tea from the three regions. Among them, polyphenol metabolites accounted for the highest proportion in the tea samples from the three production areas, with 30.921%, 29.046%, and 29.110% in Fu’an, Songxi, and Zhenghe, respectively. Analysis of variance showed that polyphenols and amino acids and their derivatives had significant differences among the three production areas (the order of polyphenol content from high to low was FA, SX, and ZH, while the order of amino acid and their derivatives content from high to low was ZH, FA, and SX (P<0.01), while organic acids and nucleotides and their derivatives had no significant differences among the three production areas (P>0.05). Among the 219 metabolites, 158 non-volatile metabolites, such as 5-formylsalicylic acid and quercetin 3-D-galactoside, showed significant or extremely significant differences. The orthogonal partial least squares discriminant analysis (OPLS-DA) model did not show overfitting, and the model validation effect was good. The prediction index and discrimination accuracy of the model were 0.859 and 98.89%, respectively. There were 85 characteristic non-volatile metabolites with variable importance in projection (VIP)≥1. Stepwise linear discriminant analysis (SLDA) selected 16 metabolites into the model, and the initial and cross-validation discrimination accuracy of the constructed discrimination model were both 100.00%. 【Conclusion】A discrimination technology of the origin of small-region white peony tea based on non-volatile metabolite characteristics was established. Both OPLS-DA and SLDA discrimination models can effectively discriminate against the origin of white peony tea based on non-volatile metabolites, which could provide the theoretical references for the traceability and brand building of tea origins.

Key words: Camellia sinensis Fu’an-dabaicha, non-volatile metabolites, geographical origin traceability, UHPLC-Q-TOF MS

Table 1

Abundance of nonvolatile metabolite compositional categories in white peony tea made of Camellia sinensis Fu’an- dabaicha from different origins"

代谢物类别
Metabolite category
福安 FA 松溪 SX 政和 ZH P
P value
均值
Average
value
标准差
Standard deviation
均值
Average
value
标准差
Standard deviation
均值
Average
value
标准差
Standard deviation
氨基酸及其衍生物
Amino acids and their derivatives
1359283.592 146380.771 1206285.502 222506.370 1469838.446 166681.109 0.000
多酚类 Polyphenols 7073841.109 583646.077 6693953.978 641215.590 6357090.270 643552.022 0.000
甘油酯 Glycerides 358637.569 39836.392 407219.317 42443.955 353241.921 44152.985 0.000
核苷酸及其衍生物
Nucleotides and their derivatives
234878.064 18948.580 246588.059 27375.389 235782.908 16910.216 0.070
木脂素和香豆素
Lignans and coumarins
24291.884 9518.496 31507.815 7916.130 33240.994 5341.380 0.000
生物碱 Alkaloid 61931.260 10319.496 53739.009 12668.201 63475.766 7954.600 0.001
萜类 Terpenoids 278234.251 31418.267 247891.861 47633.553 277394.019 43841.704 0.007
酰胺类 Amides 637092.197 81791.098 589093.297 145283.144 674614.143 106045.969 0.018
有机酸 Organic acid 3533916.268 239029.752 3514474.827 366689.745 3515382.735 172018.232 0.952
其他 Others 2176874.862 171780.527 2190098.281 230816.767 2129023.774 134364.851 0.402
219种代谢物丰度
Abundance of 219 metabolites
15738981.056 723200.984 15180851.946 1314421.927 15109084.976 771647.835 0.027
定性总丰度
Qualitative total abundance
22877475.980 1035655.435 23045954.470 1523997.885 21838190.180 1334396.847 0.001

Fig. 1

Percentage stacking of abundance values of metabolite categories of white peony tea made of Camellia sinensis Fu’an- dabaicha of different origins"

Fig. 2

Bar graph of the abundance of metabolite classes of white peony tea made of Camellia sinensis Fu’an-dabaicha from different origins Different lowercase letters indicate significant differences (P<0.05). The same as below"

Fig. 3

Scatter plot of OPLS-DA scores of white peony tea made of Camellia sinensis Fu’an-dabaicha from different origins"

Table 2

Results of OPLS-DA of white peony tea made of Camellia sinensis Fu’an-dabaicha from Different Origins"

组别
Group
预测组 Prediction Group 正确率
Accuracy rate (%)
总正确率
Overall accuracy rate (%)
FA SX ZH 无组别 No group
福安 FA 29 0 0 1 96.67 98.89
松溪 SX 0 30 0 0 100.00
政和 ZH 0 0 30 0 100.00

Fig. 4

Calculated validation plot of OPLS-DA model with 200 iterations"

Fig. 5

Heat map analysis of metabolites of white peony tea made of Camellia sinensis Fu’an-dabaicha from different origins"

Fig. 6

Scatter plot of non-volatile metabolites of SLDA in white peony tea made of Camellia sinensis Fu’an-dabaicha from different origins"

Table 3

Discriminative results of non-volatile metabolites of white peony tea made of Camellia sinensis Fu’an-dabaicha from different origins (SLDA)"

验证方法
Verification method
组别
Group
预测组别 Predicted group 正确率
Accuracy rate (%)
总正确率
Overall accuracy rate (%)
FA SX ZH
原始 Original FA 30 0 0 100.00 100.00
SX 0 30 0 100.00
ZH 0 0 30 100.00
交叉验证 Cross-validation FA 30 0 0 100.00 100.00
SX 0 30 0 100.00
ZH 0 0 30 100.00

Fig. 7

Comparison of the significance of differences in 16 characteristic metabolites of Camellia sinensis Fu’an-dabaicha from different origins"

[1]
孙威江, 陈志丹, 庄长强, 林喜盈, 邵克平, 陈林海, 许大全, 傅永兴, 王传意, 蔡良绥, 等. DB35/T 1909-2020白茶品种. 福建: 福建省市场监督管理局, 2020.
SUN W J, CHEN Z D, ZHUANG C Q, LIN X Y, SHAO K P, CHEN L H, XU D Q, FU Y X, WANG C Y, CAI L S, et al. DB35/T 1909-2020 White Tea-Variety. Fujian: Fujian Provincial Market Supervision and Administration Bureau, 2020. (in Chinese)
[2]
陈林海. 福安白茶发展现状与对策浅析. 福建茶叶, 2022, 44(12): 138-140.
CHEN L H. A brief analysis of the current situation and countermeasures of Fu’an white tea development. Fujian Tea, 2022, 44(12): 138-140. (in Chinese)
[3]
朱步泉, 施成就. 松溪白茶产史寻迹. 中国茶叶, 2019, 41(1): 62-64.
ZHU B Q, SHI C J. Tracing the production history of Songxi White Tea. China Tea, 2019, 41(1): 62-64. (in Chinese)
[4]
黄维, 张灵枝, 张嘉琳, 林馥茗, 荣杰峰, 肖春燕, 岳鹏航, 余华珠, 孙威江, 黄艳. 不同贮藏年份政和白茶的香气特征与挥发性成分分析. 茶叶科学, 2023, 43(5): 667-680.
HUANG W, ZHANG L Z, ZHANG J L, LIN F M, RONG J F, XIAO C Y, YUE P H, YU H Z, SUN W J, HUANG Y. Analysis of aroma characteristics and volatile components of Zhenghe white tea with different storage years. Journal of Tea Science, 2023, 43(5): 667-680. (in Chinese)
[5]
钱波, 廖衫, 刘斯悦, 潘彩琳, 何仲文, 宋家乐. 白茶乙醇提取物体外抗氧化活性研究. 食品工业科技, 2018, 39(8): 39-43.
QIAN B, LIAO S, LIU S Y, PAN C L, HE Z W, SONG J L. In vitro antioxidant capability of white tea ethanol extracts. Science and Technology of Food Industry, 2018, 39(8): 39-43. (in Chinese)
[6]
ZHANG H H, LI Y L, LV Y J, JIANG Y L, PAN J X, DUAN Y W, ZHU Y J, ZHANG S K. Influence of brewing conditions on taste components in Fuding white tea infusions. Journal of the Science of Food and Agriculture, 2017, 97(9): 2826-2833.
[7]
SHAO S X, XU M T, LIAO X S, LUO Q, LIN Y P, WANG P J, FANG D Y, HUANG Y B, JIN S, YE N X. Production regions discrimination of Huangguanyin oolong tea by using the content of chemical components and rare earth elements. Food Research International, 2023, 165: 112522.
[8]
罗玉琴, 韦燕菊, 林琳, 林馥茗, 苏峰, 孙威江. 基于GC-IMS技术的福建白茶产地判别. 农业工程学报, 2021, 37(6): 264-273.
LUO Y Q, WEI Y J, LIN L, LIN F M, SU F, SUN W J. Origin discrimination of Fujian white tea using gas chromatography-ion mobility spectrometry. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 264-273. (in Chinese)
[9]
刘阳, 陈根生, 许勇泉, 张英娜, 尹军峰. 冲泡过程中西湖龙井茶黄酮苷类浸出特性及滋味贡献分析. 茶叶科学, 2015, 35(3): 217-224.
LIU Y, CHEN G S, XU Y Q, ZHANG Y N, YIN J F. Extracting characteristics of flavone and flavonol glycosides in xihulongjing tea under different brewing conditions and their contribution to tea taste. Journal of Tea Science, 2015, 35(3): 217-224. (in Chinese)
[10]
YANG B, JIANG J, ZHANG H, HAN Z L, LEI X G, CHEN X J, XIAO Y, NJERI NDOMBI S, ZHU X J, FANG W P. Tea quality estimation based on multi-source information from leaf and soil using machine learning algorithm. Food Chemistry: X, 2023, 20: 100975.
[11]
LI L, WEN B, ZHANG X L, ZHAO Y, DUAN Y, SONG X F, REN S, WANG Y H, FANG W P, ZHU X J. Geographical origin traceability of tea based on multi-element spatial distribution and the relationship with soil in district scale. Food Control, 2018, 90: 18-28.
[12]
张体翠. 基于多元素和生化组分含量特征的贵州茶叶产地溯源研究[D]. 贵阳: 贵州师范大学, 2023.
ZHANG T C. Research on the origin of Guizhou tea based on the content characteristics of multi-element and biochemical components[D]. Guiyang: Guizhou Normal University, 2023. (in Chinese)
[13]
甘芳瑗, 刘振平, 傅丙生, 龙道崎, 庞钶靖, 姜容. 气相色谱-离子迁移谱技术在茶叶领域应用的研究进展. 茶叶科学, 2024, 44(4): 565-574.
GAN F Y, LIU Z P, FU B S, LONG D Q, PANG K J, JIANG R. Research progress on the application of gas chromatography-ion mobility spectrometry in the field of tea. Journal of Tea Science, 2024, 44(4): 565-574. (in Chinese)
[14]
罗钦, 毛方华, 陈谢勇, 陈静, 黄彪, 叶乃兴, 郑德勇, 韦航, 姚清华. 不同生境白牡丹茶叶香气特征分析及产地判别. 中国农业科学, 2024, 57(23): 4774-4799. doi: 10.3864/j.issn.0578-1752.2024.23.015.
LUO Q, MAO F H, CHEN X Y, CHEN J, HUANG B, YE N X, ZHENG D Y, WEI H, YAO Q H. Analysis of aroma characteristics and origin discrimination of white peony tea in different origins. Scientia Agricultura Sinica, 2024, 57(23): 4774-4799. doi: 10.3864/j.issn.0578-1752.2024.23.015. (in Chinese)
[15]
周峰, 柯家平, 姜宗德, 温明椿, 张梁. 茶叶滋味成分研究进展. 中国茶叶加工, 2023(4): 15-21.
ZHOU F, KE J P, JIANG Z D, WEN M C, ZHANG L. Research progress on tea taste composition. China Tea Processing, 2023(4): 15-21. (in Chinese)
[16]
张洁, 王杉, 任小盈, 马冰凇, 王广铭, 马存强. 3个不同产地白茶品质成分与体外抗氧化能力比较. 食品研究与开发, 2023, 44(8): 170-176.
ZHANG J, WANG S, REN X Y, MA B S, WANG G M, MA C Q. Comparison of quality components and in vitro antioxidant ability of white tea samples from three production areas. Food Research and Development, 2023, 44(8): 170-176. (in Chinese)
[17]
叶小辉. 基于现代质评技术的白茶滋味品质构成研究[D]. 福州: 福建农林大学, 2015.
YE X H. Taste quality constitute of white tea based on modern quality instrumental assessment[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese)
[18]
ZHOU J T, YIN Y X. Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry. The Analyst, 2016, 141(23): 6362-6373.
[19]
LI Z Y, FENG C X, LUO X G, YAO H L, ZHANG D C, ZHANG T C. Revealing the influence of microbiota on the quality of Pu-erh tea during fermentation process by shotgun metagenomic and metabolomic analysis. Food Microbiology, 2018, 76: 405-415.
[20]
RYU H W, YUK H J, AN J H, KIM D Y, SONG H H, OH S R. Comparison of secondary metabolite changes in Camellia sinensis leaves depending on the growth stage. Food Control, 2017, 73: 916-921.
[21]
ALASVAND S, KIM H J, HALEY-ZITLIN V. UPLC-QTOF-MS method for identification of mango leaf tea metabolites. Current Developments in Nutrition, 2020, 4: 1736.
[22]
XUE J J, LIU P P, GUO G Y, WANG W W, ZHANG J Y, WANG W, LE T, YIN J F, NI D J, JIANG H Y. Profiling of dynamic changes in non-volatile metabolites of Shaken black tea during the manufacturing process using targeted and non-targeted metabolomics analysis. LWT, 2022, 156: 113010.
[23]
李娜, 雷光明, 何庆, 姚华, 唐人杰, 吴雪莉, 王峻, 后鹏飞. 基于非靶向代谢组学比较不同采制季节四川白茶滋味物质差异. 食品与发酵科技, 2024, 60(2): 7-13, 46.
LI N, LEI G M, HE Q, YAO H, TANG R J, WU X L, WANG J, HOU P F. Comparison of taste substances of Sichuan white tea in different seasons based on non-targeted metabolomics approach. Food and Fermentation Science & Technology, 2024, 60(2): 7-13, 46. (in Chinese)
[24]
武珊珊, 赵远艳, 王启, 舒娜, 李进强, 孙蓉, 马占霞, 赵明. 9个云南大叶种茶树品种的白茶适制性评价. 分子植物育种, 2025(7): 1-16.
WU S S, ZHAO Y Y, WANG Q, SHU N, LI J Q, SUN R, MA Z X, ZHAO M. Evaluation of suitability for manufacturing of white tea by NineCultivars of tea(Camellia sinensis var. assamica). Molecular Plant Breeding, 2025(7): 1-16. (in Chinese)
[25]
滕秋, 江其柳, 冯彩丽, 姚恩琪, 张玉莲. 不同生长期昭平茶叶化学成分变化及其对加工品质影响研究. 当代农机, 2024(10): 48-49.
TENG Q, JIANG Q L, FENG C L, YAO E Q, ZHANG Y L. Study on the changes of chemical components of Zhaoping tea at different growth stages and their impact on processing quality. Contemporary Farm Machinery, 2024(10): 48-49. (in Chinese)
[26]
吴艳艳. 黄茶、白茶的化学成分研究[D]. 大连: 辽宁师范大学, 2013.
WU Y Y. The research on the composition of yellow tea and white tea[D]. Dalian: Liaoning Normal University, 2013. (in Chinese)
[27]
AGATI G, TATTINI M. Multiple functional roles of flavonoids in photoprotection. The New Phytologist, 2010, 186(4): 786-793.
[28]
MA C Q, MA B S, WANG J C, WANG Z H, CHEN X, ZHOU B X, LI X H. Geographical origin identification of Chinese white teas, and their differences in tastes, chemical compositions and antioxidant activities among three production regions. Food Chemistry: X, 2022, 16: 100504.
[29]
肖春燕, 李晶, 王治会, 何碧云, 黄维, 林馥茗, 陈林海, 孙威江. 福建不同产地红茶风味品质差异分析. 食品工业科技, 2025, 46(5): 255-266.
XIAO C Y, LI J, WANG Z H, HE B Y, HUANG W, LIN F M, CHEN L H, SUN W J. Analysis of flavor and quality differences in black tea from different geographical origins in Fujian. Science and Technology of Food Industry, 2025, 46(5): 255-266. (in Chinese)
[30]
ZHANG S R, SHI Y, JIANG J L, LUO L Y, ZENG L. Discriminant analysis of Pu-erh tea of different raw materials based on phytochemicals using chemometrics. Foods, 2022, 11(5): 680.
[1] WEI Yi-Min, GUO Bo-Li, WEI Shuai, SUN Shu-Min, ZHAO Hai-Yan. The Principle of Food Geographical Origin Traceability and Authenticity Technique [J]. Scientia Agricultura Sinica, 2012, 45(24): 5073-5081.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!