Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (15): 3097-3117.doi: 10.3864/j.issn.0578-1752.2025.15.012

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

The Potential of Alternative Proteins from Edible Fungi Based on Amino Acid and Physicochemical Characterization

YU YunYan(), MA GaoXing*(), DUAN YaNing, TAO Qi, LI XinYi, HU QiuHui, MA Ning   

  1. College of Food Science and Engineering, Nanjing University of Finance and Economics/Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023
  • Received:2024-12-21 Accepted:2025-05-06 Online:2025-08-01 Published:2025-07-30
  • Contact: MA GaoXing

Abstract:

【Objective】 From the perspectives of nutrition and processing, the amino acid composition, physicochemical properties, and structural characteristics of common edible fungal proteins were analyzed to elucidate the nutritional benefits of proteins derived from fungi, and to explore their prospective applications within the realm of food processing.【Method】 From the vantage points of raw material accessibility and economic advantages, eight species of edible fungi were chosen as subjects for this study: Lentinula edodes, Agaricus bisporus, Hypsizigus marmoreus (white cultivar), Pleurotus ostreatus, Hypsizygus marmoreus (brown cultivar), Agrocybe aegerita, Flammulina filiformis, and Pleurotus eryngii. To evaluate the disparities in amino acid composition and digestibility of their proteins, by utilizing metrics such as ratio of amino acid and amino acid ratio coefficient, the nutritional value and potential benefits of these fungal proteins as substitutes for conventional proteins were assessed by comparing them with whole egg protein, wheat protein, and soybean protein. The physicochemical properties of various edible fungal proteins were analyzed, including solubility, water-holding property, oil-holding property, emulsifying property, and foaming property. The structural characteristics were analyzed by Fourier-transform infrared spectroscopy and scanning electron microscopy. The correlation between physicochemical properties and structural characteristics were established, and the potential applications of edible fungal proteins within the food industry were assessed.【Result】 The EAA/TAA ratios of all eight edible fungal proteins were approximately 40%, while the EAA/NEAA ratios exceeded 60%, aligning with the ideal protein model. The amino acid profile of L. edodes protein exhibited the greatest similarity to the amino acid pattern spectrum and the reference protein's amino acid composition, boasting an essential amino acid index of 66.31. Upon adjusting the amino acid score to account for digestibility, L. edodes protein continued to hold the highest overall score, establishing it as a high-quality protein source. Furthermore, the essential amino acids of A. aegerita protein constituted 47.12% of its total amino acid profile, a figure comparable to that of whey protein, thereby rendering it an exceptional supplementary source of these vital essential amino acids. The digestibility of the protein from H. marmoreus (white cultivar) was 89.59%, and as a protein that is rapidly digestible, it would be suitable for facilitating swift physical recovery post-exercise. The physicochemical properties of the eight edible fungal proteins also exhibited considerable differences. Both H. marmoreus (white cultivar) and H. marmoreus (brown cultivar) displayed favorable water-holding, oil-holding and emulsifying properties, suggesting extensive potential applications within the realm of food processing.【Conclusion】 Utilizing the nutritional evaluation system for edible fungi, the amino acid profile of L. edodes protein has been determined to possess the highest overall rating, thus establishing L. edodes protein as a viable standalone protein supplement. The proteins of P. ostreatus, P. eryngii, H. marmoreus (white cultivar) and H. marmoreus (brown cultivar) possessed processing advantages and structural similarities in various aspects, rendering them suitable for application in the production and processing of meat products, flour-based products, and baked goods, thereby optimizing the utilization of their nutritional and processing benefits.

Key words: edible fungi, alternative proteins, amino acid analysis, in vitro digestion, physicochemical properties, structural analysis

Table 1

Extraction conditions of different edible fungal proteins"

食用菌种类
Edible fungi
碱提 Alkali extraction 酸沉 Acid precipitation 参考文献
Reference
料液比
Solid-liquid ratio (m/V)
pH 温度
Temperature (℃)
时间
Time (h)
pH 时间
Time (h)
香菇 L. edodes 1:45 10 50 3 4.2 4 [27-28]
双孢蘑菇 A. bisporus 1:40 10 55 2.5 4.3 4 [29]
白玉菇 H. marmoreus (white cultivar) 1:40 12 60 2 4.2 4 [30-31]
平菇 P. ostreatus 1:20 10 50 2.5 3.8 4 [32-33]
蟹味菇 H. marmoreus (brown cultivar) 1:40 12 60 2 4.2 4 [30]
茶树菇 A. aegerita 1:45 10 50 3 4.2 4 [34]
金针菇 F. filiformis 1:15 10 30 0.5 3.8 3 [35]
杏鲍菇 P. eryngii 1:20 10 50 2 3.8 4 [36]

Table 2

Composition and concentration of digestive electrolyte solutions"

浓度 (mol·L-1) 模拟唾液 SSF (mmol·L-1, pH 7) 模拟胃液SGF (mmol·L-1, pH 3) 模拟肠液 SIF (mmol·L-1, pH 7)
NaCl 2 - 47.2 38.4
KCl 0.5 15.1 6.9 6.8
KH2PO4 0.5 3.7 0.9 0.8
NaHCO3 1 13.6 25 85
MgCl2(H2O)6 0.15 0.15 0.12 0.33
(NH4)2CO3 0.5 0.06 0.5 -
HCl 6 1.1 15.6 0.4
CaCl2(H2O)2 0.3 1.5 2.5 0.6

Table 3

Protein content and extraction rate of crude protein from different edible fungi"

食用菌种类
Edible fungi
食用菌粉蛋白质含量
Protein content of edible fungal powder (g/100 g)
粗蛋白蛋白质含量
Protein content of protein extracts
(g/100 g)
蛋白提取率
Extraction rate (%)
香菇 L. edodes 18.54±0.86f 79.20±0.46a 65.53±0.06a
双孢蘑菇 A. bisporus 23.70±0.28b 54.78±0.46c 13.33±0.04e
白玉菇 H. marmoreus (white cultivar) 21.07±0.05c 40.84±0.20f 20.12±0.01cd
平菇 P. ostreatus 23.87±0.23b 56.07±0.74b 29.01±0.03b
蟹味菇 H. marmoreus (brown cultivar) 19.14±0.14e 43.78±0.63e 25.40±0.02bc
茶树菇 A. aegerita 27.20±0.10a 40.52±0.32f 17.45±0.00de
金针菇 F. filiformis 6.10±0.01g 33.62±0.01g 24.50±0.04bc
杏鲍菇 P. eryngii 19.79±0.07d 51.71±0.53d 20.02±0.02cd

Table 4

Amino acid of different edible fungal proteins (mg·g-1)"

氨基酸
AA
香菇
L. edodes
双孢蘑菇
A. bisporus
白玉菇
H. marmoreus (white cultivar)
平菇
P. ostreatus
蟹味菇
H. marmoreus (brown cultivar)
茶树菇
A. aegerita
金针菇
F. filiformis
杏鲍菇
P. eryngii
普通全鸡蛋[50-52]
Whole eggs (g/100 g)
天冬氨酸 Asp 77.33±0.49 40.59±0.48 29.50±0.90 45.02±0.98 30.02±0.11 23.5±0.76 23.91±0.99 39.02±1.00 1.04 1.08 1.10
苏氨酸 Thr* 25.88±1.16 26.57±0.15 17.61±0.39 25.29±0.57 19.95±0.62 18.70±0.75 16.49±0.95 24.35±1.15 0.61 0.59 0.60
丝氨酸 Ser 17.72±0.90 12.10±0.29 9.76±0.70 12.68±0.38 10.47±0.10 9.87±0.49 6.79±0.53 12.37±0.13 0.78 0.70 0.85
谷氨酸 Glu 80.88±1.55 22.86±0.12 18.93±0.16 29.44±0.66 18.09±0.55 10.66±0.42 13.38±1.64 22.44±0.41 1.29 1.71 1.51
甘氨酸 Gly 44.66±1.00 21.20±0.06 18.02±1.28 25.64±0.15 18.88±0.70 12.85±0.74 6.92±0.64 22.24±0.57 0.38 0.36 0.43
丙氨酸 Ala 76.62±1.36 67.36±1.88 48.17±0.55 69.27±0.57 51.36±0.50 43.47±0.42 42.37±1.43 65.00±0.29 0.56 0.58 0.73
半胱氨酸 Cys 4.16±0.38 3.32±0.11 1.89±0.19 3.11±0.03 2.09±0.02 2.08±0.30 2.39±0.17 1.67±1.03 0.17 0.39 0.31
缬氨酸 Val* 32.29±1.63 30.99±0.01 21.79±0.63 29.87±0.52 24.32±1.04 23.33±1.36 20.72±1.78 29.64±1.89 0.74 0.63 0.80
甲硫氨酸Met* 12.33±1.07 11.02±0.64 7.08±0.19 13.75±0.45 8.21±0.14 8.05±0.47 5.9±0.48 11.06±0.57 0.29 0.18 0.53
异亮氨酸 Ile* 27.39±0.41 23.99±0.53 16.50±0.52 22.31±0.50 18.95±1.13 19.66±0.52 14.75±1.35 21.52±1.95 0.48 0.45 0.70
亮氨酸 Leu* 75.48±1.40 55.85±1.71 42.23±1.28 57.5±0.99 46.63±0.49 43.57±1.99 32.78±0.95 50.27±1.22 0.84 0.83 1.33
酪氨酸 Tyr 32.27±1.49 24.32±0.66 17.47±0.68 25.25±0.67 19.87±0.38 19.68±0.28 21.94±0.88 23.09±0.48 0.38 0.36 0.61
苯丙氨酸Phe* 69.57±0.73 48.65±1.26 35.54±1.03 47.82±0.64 37.66±1.01 37.32±1.05 24.34±0.63 42.93±1.07 0.49 0.55 0.72
赖氨酸 Lys* 63.82±0.17 34.13±0.71 24.71±1.18 36.43±0.22 26.30±0.24 26.34±0.68 11.73±0.30 37.37±0.28 0.84 0.78 0.80
组氨酸 His 23.75±1.29 16.34±0.26 12.04±0.50 15.72±0.20 12.87±0.06 11.78±0.62 7.02±0.47 14.54±0.22 0.29 0.23 0.33
精氨酸 Arg 78.47±1.29 44.25±1.03 29.79±0.99 43.28±0.59 34.30±0.45 39.17±0.24 19.56±1.61 42.02±0.82 0.67 0.62 0.88
脯氨酸 Pro 65.16±1.85 41.59±1.24 29.03±1.07 41.23±0.34 29.53±0.13 25.57±0.21 27.27±0.92 36.4±0.82 0.45 0.42 0.23
氨基酸总量
TAA
807.78 525.13 380.04 543.58 409.48 375.60 298.26 495.95 10.30 10.46 12.45
必需氨基酸
EAA
306.76 231.19 165.46 232.95 182.02 176.97 126.71 217.15 4.29 4.01 5.48
非必需氨基酸
NEAA
501.01 293.94 214.59 310.63 227.46 198.63 171.55 278.80 6.01 6.45 6.97
EAA/TAA 37.98% 44.03% 43.54% 42.86% 44.45% 47.12% 42.48% 43.78% 41.65% 38.34% 44.01%
EAA/NEAA 61.23% 78.65% 77.10% 74.99% 80.02% 89.09% 73.86% 77.89% 71.38% 62.17% 78.59%

Fig. 1

Heatmap of amino acid content of eight edible fungal proteins A: Ratio of amino acid; B: Ratio of amino acid coefficient. FAO/WHO recommended amino acid scoring pattern for children, adolescents and adults over the age of 3 years is Histidine (His)=16, Threonine (Thr)=25, Valine (Val)=40, Methionine+Cysteine (Met+Cys)=23, Isoleucine (Ile)=30, Leucine (Leu)=61, Tyrosine+Phenylalanine (Tyr+Phe) = 41, Lysine (Lys)=48. The same as below"

Table 5

Chemical score and essential amino acid index of different edible fungal proteins"

香菇
L. edodes
双孢蘑菇
A. bisporus
白玉菇
H. marmoreus (white cultivar)
平菇
P. ostreatus
蟹味菇
H. marmoreus (brown cultivar)
茶树菇
A. aegerita
金针菇
F. filiformis
杏鲍菇
P. eryngii
组氨酸 His 107.94 74.28 54.71 71.45 58.49 53.54 31.90 66.07
苏氨酸 Thr 55.06 56.53 37.46 53.81 42.44 39.78 35.09 51.82
缬氨酸 Val 48.93 46.95 33.01 45.25 36.85 35.35 31.39 44.91
甲硫氨酸+半胱氨酸 Met+Cys 28.92 25.16 15.74 29.58 18.07 17.77 14.56 22.34
异亮氨酸 Ile 50.73 44.43 30.56 41.31 35.10 36.40 27.32 39.86
亮氨酸 Leu 87.77 64.94 49.11 66.86 54.22 50.66 38.12 58.46
酪氨酸+苯丙氨酸 Tyr+Phe 109.50 78.46 57.00 78.57 61.86 61.29 49.76 70.99
赖氨酸 Lys 91.18 48.76 35.30 52.04 37.57 37.63 16.75 53.38
EAAI 66.31 52.16 36.59 52.54 40.55 39.30 28.57 48.44

Fig. 2

In vitro simulated digestibility of eight edible fungal proteins Different lowercase letters indicate significant difference (P<0.05). The same as below"

Table 6

Digestibility-corrected amino acid scores of different edible fungal proteins"

香菇
L. edodes
双孢蘑菇
A. bisporus
白玉菇
H. marmoreus (white cultivar)
平菇
P. ostreatus
蟹味菇
H. marmoreus (brown cultivar)
茶树菇
A. aegerita
金针菇
F. filiformis
杏鲍菇
P. eryngii
体外模拟消化肠末端消化率
In vitro simulated digestibility of intestinal terminals (%)
65.65 69.49 89.59 75.71 77.92 80.44 84.69 76.90
组氨酸 His 97.44 70.98 67.40 74.38 62.66 59.21 37.15 69.86
苏氨酸 Thr 67.96 73.85 63.09 76.58 62.17 60.15 55.87 74.91
缬氨酸 Val 53.01 53.83 48.80 56.53 47.38 46.91 43.86 56.99
甲硫氨酸+半胱氨酸 Met+Cys 47.05 43.33 34.94 55.50 34.90 35.43 30.56 42.58
异亮氨酸 Ile 59.95 55.57 49.28 56.29 49.23 52.71 41.65 55.17
亮氨酸 Leu 81.24 63.62 62.03 71.37 59.56 57.45 45.51 63.37
酪氨酸+苯丙氨酸 Tyr+Phe 163.07 123.68 115.83 134.92 109.33 111.83 95.59 123.83
赖氨酸 Lys 87.30 49.42 46.12 57.45 42.70 44.15 20.69 59.87

Fig. 3

Comparison of functional properties of eight edible fungal proteins"

Fig. 4

FTIR of eight edible fungal proteins extracts a: L. edodes; b: A. bisporus; c: H. marmoreus (white cultivar); d: P. ostreatus; e: H. marmoreus (brown cultivar); f: A. Aegerita; g: F. Filiformis; h: P. eryngii"

Fig. 5

Comparison of the secondary structure of eight fungal proteins"

Fig. 6

Second-order infrared derivatives of eight edible mushroom proteins A: Spectrogram; B: Correlation coefficients. a: L. edodes; b: A. bisporus; c: H. marmoreus (white cultivar); d: P. ostreatus; e: H. marmoreus (brown cultivar); f: A. Aegerita; g: F. Filiformis; h: P. eryngii"

Fig. 7

First-order infrared derivative of eight edible fungal proteins A: Principal component analysis; B: Cluster analysis"

Fig. 8

Scanning electron micrographs of eight edible fungal proteins a: L. edodes; b: A. bisporus; c: H. marmoreus (white cultivar); d: P. ostreatus; e: H. marmoreus (brown cultivar); f: A. Aegerita; g: F. Filiformis; h: P. Eryngii"

[1]
SMETANA S, MATHYS A, KNOCH A, HEINZ V. Meat alternatives: Life cycle assessment of most known meat substitutes. The International Journal of Life Cycle Assessment, 2015, 20(9): 1254-1267.
[2]
HAYES M. Challenges regarding protein provision for the growing global population: Improving the environmental impact of traditional protein supply chains and maximising use of coproducts and alternative, new resources. Global Challenges, 2023, 7(5): 2300059.
[3]
SUN C X, GE J, HE J, GAN R Y, FANG Y P. Processing, quality, safety, and acceptance of meat analogue products. Engineering, 2021, 7(5): 279-288. (in Chinese)
[4]
HUMPENÖDER F, BODIRSKY B L, WEINDL I, LOTZE-CAMPEN H, LINDER T, POPP A. Projected environmental benefits of replacing beef with microbial protein. Nature, 2022, 605(7908): 90-96.
[5]
BENIWAL A S, SINGH J, KAUR L, HARDACRE A, SINGH H. Meat analogs: Protein restructuring during thermomechanical processing. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(2): 1221-1249.

doi: 10.1111/1541-4337.12721 pmid: 33590609
[6]
赵春艳, 华蓉, 董娇, 刘寅山, 李丹丹, 余金凤, 孙达锋. 2019年至2022年我国食用菌产量和种类概况分析. 中国食用菌, 2024, 43(5): 101-105.
ZHAO C Y, HUA R, DONG J, LIU Y S, LI D D, YU J F, SUN D F. Chinese edible fungi yield and species distribution analysis from 2019 to 2022. Edible Fungi of China, 2024, 43(5): 101-105. (in Chinese)
[7]
李泰, 卢士军, 孙君茂, 徐泽群, 戚俊, 刘鹏, 黄家章. 26种常见市售食用菌营养成分分析及评价. 中国食用菌, 2021, 40(12): 66-72.
LI T, LU S J, SUN J M, XU Z Q, QI J, LIU P, HUANG J Z. Analysis and evaluation on nutritional components of 26 common edible fungi in market. Edible Fungi of China, 2021, 40(12): 66-72. (in Chinese)
[8]
陈春梅, 王确, 周国强, 陈召桂. 植物蛋白及其产品应用的研究进展. 现代食品, 2022, 28(20): 53-62.
CHEN C M, WANG Q, ZHOU G Q, CHEN Z G. Research progress on the application of plant proteins and their products. Modern Food, 2022, 28(20): 53-62. (in Chinese)
[9]
ZHOU Z T, LUO S J, JIN Y Y, WU X H, LIU X, CHEN J. Comparative efficacy of amino acid availability and peptidomic analysis of alternative proteins from different sources under dynamic in vitro protein digestion. Food Hydrocolloids, 2025, 159: 110665.
[10]
LEE Y J, MOON B C, LEE D K, AHN J H, GONG G, UM Y, LEE S M, KIM K H, KO J K. Sustainable production of microbial protein from carbon dioxide in the integrated bioelectrochemical system using recycled nitrogen sources. Water Research, 2025, 268: 122576.
[11]
GADO H M, METWALLY H M, SAYED H A, MOHAMMED Z R, DE PALO P, LACKNER M, SALEM A Z M. Lactational performance of dairy buffaloes affected by replacing soybean meal with an alternative microbial protein source. Journal of Agriculture and Food Research, 2024, 18: 101445.
[12]
罗晓莉, 张沙沙, 严明, 张微思, 孙达锋. 云南8种栽培食用菌蛋白质和氨基酸分析及营养价值评价. 食品工业, 2021, 42(8): 328-332.
LUO X L, ZHANG S S, YAN M, ZHANG W S, SUN D F. Protein and amino acid analysis and nutritional value evaluation of eight cultivation edible fungi in Yunnan Province. The Food Industry, 2021, 42(8): 328-332. (in Chinese)
[13]
孙合群, 覃先武, 胥怀, 李沛, 彭颖. 4种不同来源蛋白质的氨基酸测定及营养评价研究. 饮料工业, 2022, 25(6): 1-4.
SUN H Q, QIN X W, XU H, LI P, PENG Y. Study on amino acid determination and nutritional evaluation of 4 kinds of proteins from different sources. Beverage Industry, 2022, 25(6): 1-4. (in Chinese)
[14]
王红磊. 豌豆蛋白基食品3D打印体系的构建及其性质研究[D]. 淄博: 山东理工大学, 2024.
WANG H L. Construction and properties of pea protein-based food 3D printing system[D]. Zibo: Shandong University of Technology, 2024. (in Chinese)
[15]
王新新. 花生分离蛋白的多样化改性及其在不同领域的应用研究[D]. 济南: 齐鲁工业大学, 2023.
WANG X X. Study on the diversified modification of peanut protein isolates and its application in different fields[D]. Jinan: Qilu University of Technology, 2023. (in Chinese)
[16]
张金闯. 高水分挤压过程中花生蛋白构象变化及品质调控[D]. 北京: 中国农业科学院, 2019.
ZHANG J C. Conformational changes and quality control of peanut protein during the high-moisture extrusion process[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[17]
NEPOCATYCH S, MELSON C E, MADZIMA T A, BALILIONIS G. Comparison of the effects of a liquid breakfast meal with varying doses of plant-based soy protein on appetite profile, energy metabolism and intake. Appetite, 2019, 141: 104322.
[18]
江海涛. 八种食药用真菌蛋白质营养价值评价. 南京晓庄学院学报, 2016, 32(6): 46-52.
JIANG H T. An evaluation study on nutritional value of eight kinds of edible and medicinal fungi protein. Journal of Nanjing Xiaozhuang University, 2016, 32(6): 46-52. (in Chinese)
[19]
YU X Y, ZOU Y, ZHENG Q W, LU F X, LI D H, GUO L Q, LIN J F. Physicochemical, functional and structural properties of the major protein fractions extracted from Cordyceps militaris fruit body. Food Research International, 2021, 142: 110211.
[20]
熊可心, 熊哲民, 王子凌, 王海滨, 路洪艳, 彭利娟, 王伟, 倪来学. 3种植物蛋白及不同添加量对乳化香肠品质特性的影响. 食品科技, 2023, 48(3): 132-139.
XIONG K X, XIONG Z M, WANG Z L, WANG H B, LU H Y, PENG L J, WANG W, NI L X. Effect of three plant proteins and different addition amounts on the quality characteristics of emulsified sausages. Food Science and Technology, 2023, 48(3): 132-139. (in Chinese)
[21]
FENG H Y, JIN H, GAO Y, YAN S Q, ZHANG Y, ZHAO Q S, XU J. Effects of freeze-thaw cycles on the structure and emulsifying properties of peanut protein isolates. Food Chemistry, 2020, 330: 127215.
[22]
魏君慧, 薛媛, 冯莉, 张若曦, 王小晶, 雷宏杰, 徐怀德. 杏鲍菇分离蛋白和清蛋白的理化性质及功能分析. 食品科学, 2018, 39(18): 54-60.

doi: 10.7506/spkx1002-6630-201818009
WEI J H, XUE Y, FENG L, ZHANG R X, WANG X J, LEI H J, XU H D. Physicochemical and functional properties of Pleurotus eryngii protein isolate and albumin. Food Science, 2018, 39(18): 54-60. (in Chinese)
[23]
CERÓN-GUEVARA M I, RANGEL-VARGAS E, LORENZO J M, BERMÚDEZ R, PATEIRO M, RODRÍGUEZ J A, SÁNCHEZ- ORTEGA I, SANTOS E M. Reduction of salt and fat in frankfurter sausages by addition of Agaricus bisporus and Pleurotus ostreatus flour. Foods, 2020, 9(6): 760.
[24]
WANG L Y, LI C, REN L L, GUO H Y, LI Y. Production of pork sausages using Pleurotus eryngii with different treatments as replacements for pork back fat. Journal of Food Science, 2019, 84(11): 3091-3098.
[25]
夏轩泽, 李言, 钱海峰, 张晖, 齐希光, 王立. 豌豆蛋白乳化性及其改善研究进展. 食品与发酵工业, 2021, 47(2): 279-284.

doi: 10.13995/j.cnki.11-1802/ts.024730
XIA X Z, LI Y, QIAN H F, ZHANG H, QI X G, WANG L. Research progress on improvement the emulsification property of pea protein. Food and Fermentation Industries, 2021, 47(2): 279-284. (in Chinese)

doi: 10.13995/j.cnki.11-1802/ts.024730
[26]
周航, 肖彤, 解铁民. 豌豆蛋白的改性及其在食品中应用的研究进展. 食品工业科技, 2023, 44(6): 485-493.
ZHOU H, XIAO T, XIE T M. Research progress on modification and application of pea protein in food field. Science and Technology of Food Industry, 2023, 44(6): 485-493. (in Chinese)
[27]
王梓杭, 范秀芝, 姚芬, 殷朝敏, 史德芳, 高虹, 沈汪洋. 香菇蛋白提取、特性分析及氨基酸评价. 现代食品科技, 2023, 39(6): 186-194.
WANG Z H, FAN X Z, YAO F, YIN C M, SHI D F, GAO H, SHEN W Y. Extraction, characteristic analysis and amino acid evaluation of Lentinus edodes protein. China Industrial Economics, 2023, 39(6): 186-194. (in Chinese)
[28]
胡丹慧. 香菇柄蛋白质的提取、性质和新型营养面包的开发[D]. 沈阳: 辽宁大学, 2019.
HU D H. Extraction and properties of the Lentinus edodes stem protein and the application of new nutritious bread’s development[D]. Shenyang: Liaoning University, 2019. (in Chinese)
[29]
郑新雷, 李灵诚, 滕建文, 韦保耀, 黄丽, 夏宁, 覃柳迪. 双孢蘑菇蛋白的提取工艺优化及其功能性质. 食品工业科技, 2019, 40(16): 126-132, 139.
ZHENG X L, LI L C, TENG J W, WEI B Y, HUANG L, XIA N, QIN L D. Optimization of extraction and functional properties of Agaricus bisporus protein. Science and Technology of Food Industry, 2019, 40(16): 126-132, 139. (in Chinese)
[30]
李晓明, 陈凯, 黄占旺, 沈勇根, 卢剑青, 程宏桢, 刘馥源, 安兆祥, 徐弦. 白玉菇蛋白提取工艺优化及其功能特性研究. 食品与发酵工业, 2020, 46(4): 239-246.

doi: 10.13995/j.cnki.11-1802/ts.022262
LI X M, CHEN K, HUANG Z W, SHEN Y G, LU J Q, CHENG H Z, LIU F Y, AN Z X, XU X. Optimization of protein extraction process and its functional properties of white Hypsizygus marmoreu. Food and Fermentation Industries, 2020, 46(4): 239-246. (in Chinese)
[31]
郑文祺. 白玉菇蛋白的提取优化与理化性质研究及其3D打印应用[D]. 新乡: 河南科技学院, 2023.
ZHENG W Q. Extraction optimization and physicochemical properties of white Hypsizygus marmoreu protein and its application to 3D printing[D]. Henan: Henan Institute of Science and Technology, 2023. (in Chinese)
[32]
秦之皓. 富硒平菇蛋白的硒检测[D]. 武汉: 武汉轻工大学, 2020.
QIN Z H. Selenium detection of selenium-rich Pleurotus ostreatus protein[D]. Wuhan: Wuhan Polytechnic University, 2020. (in Chinese)
[33]
冯曌. 食用菌蛋白与酶解多肽的制备及抗氧化活性的研究[D]. 广州: 暨南大学, 2018.
FENG Z. Preparation and antioxidant activity analysis of protein and enzymolysis polypeptide from edible fungi[D]. Guangzhou: Jinan University, 2018. (in Chinese)
[34]
伍善广, 孙红娜, 孙建华, 廖丹葵. 茶树菇中降压活性蛋白提取工艺优化. 南方医科大学学报, 2010, 30(6): 1264-1267.
WU S G, SUN H N, SUN J H, LIAO D K. Technical optimization for extracting hypotensive active peptides from Agrocybe aegerita. Journal of Southern Medical University, 2010, 30(6): 1264-1267. (in Chinese)
[35]
魏书信, 刘丽娜, 王安建, 李静, 李顺锋. 胶体磨辅助酶法提取金针菇根蛋白的工艺研究. 保鲜与加工, 2015, 15(3): 58-61.
WEI S X, LIU L N, WANG A J, LI J, LI S F. Process optimization of protein extraction from Flammulina velutipes root using enzyme method assisted by colloid mill. Storage and Process, 2015, 15(3): 58-61. (in Chinese)
[36]
郑新雷. 杏鲍菇分离蛋白的制备、理化功能特性与抗氧化活性研究[D]. 南宁: 广西大学, 2019.
ZHENG X L. Study on preparation, physicochemical properties and antioxidant activity of Pleurotus eryngii isolated protein[D]. Nanning: Guangxi University, 2019. (in Chinese)
[37]
国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中蛋白质的测定: GB 5009.5—2016[S]. 北京: 中国标准出版社, 2017.
National Health and Family Planning Commission, China Food and Drug Administration. National food safety standard Determination of protein in food: GB 5009.5-2016[S]. Beijing: Standards Press of China, 2017. (in Chinese)
[38]
国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中氨基酸的测定: GB 5009.124—2016[S]. 北京: 中国标准出版社, 2017.
National Health and Family Planning Commission, China Food and Drug Administration. Determination of Amino Acids in Food Safety National Standards: GB 5009.124-2016[S]. Beijing: Standards Press of China, 2017. (in Chinese)
[39]
Dietary protein quality evaluation in human nutrition. Report of an FAQ Expert Consultation. FAO Food and Nutrition Paper, 2013, 92: 1-66.
[40]
MILLWARD D J. Amino acid scoring patterns for protein quality assessment. British Journal of Nutrition, 2012, 108(S2): S31-S43.
[41]
FAO/WHO/UNU. Energy and Protein Requirements:Report of A Joint FAO/WHO/UNU Expert Consultation. Geneva: WHO Press, 1985.
[42]
BRODKORB A, EGGER L, ALMINGER M, ALVITO P, ASSUNÇÃO R, BALLANCE S, BOHN T, BOURLIEU-LACANAL C, BOUTROU R, CARRIÈRE F, et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14(4): 991-1014.
[43]
李益玲, 张昱格, 陈映姗, 程赛, 朱杰, 赵雷, 陈旭. 大豆蛋白纤维聚集体的体外消化特性研究. 食品安全质量检测学报, 2023, 14(17): 9-16.
LI Y L, ZHANG Y G, CHEN Y S, CHENG S, ZHU J, ZHAO L, CHEN X. In vitro digestive properties of soy protein fibrous aggregates. Journal of Food Safety & Quality, 2023, 14(17): 9-16. (in Chinese)
[44]
YANG Y Y, ZHENG Y X, MA W P, ZHANG Y, SUN C X, FANG Y P. Meat and plant-based meat analogs: Nutritional profile and in vitro digestion comparison. Food Hydrocolloids, 2023, 143: 108886.
[45]
DAS D, MIR N A, CHANDLA N K, SINGH S. Combined effect of pH treatment and the extraction pH on the physicochemical, functional and rheological characteristics of amaranth (Amaranthus hypochondriacus) seed protein isolates. Food Chemistry, 2021, 353: 129466.
[46]
史瑞婕. 杏鲍菇蛋白质结构表征及功能特性研究[D]. 太谷: 山西农业大学, 2019.
SHI R J. Research on structural characterization and functional properties of Pleurotus eryngii protein[D]. Taigu: Shanxi Agricultural University, 2019. (in Chinese)
[47]
朱增芳. 蛋白质氧化对鹰嘴豆蛋白结构、理化性质及功能性的影响[D]. 石河子: 石河子大学, 2021.
ZHU Z F. Effects of protein oxidation on structure, physicochemical properties and function of chickpea protein isolate[D]. Shihezi: Shihezi University, 2021. (in Chinese)
[48]
ZHANG Y J, ZHOU X, ZHONG J Z, TAN L H, LIU C M. Effect of pH on emulsification performance of a new functional protein from jackfruit seeds. Food Hydrocolloids, 2019, 93: 325-334.
[49]
杨旭昆, 汪禄祥, 刘艳芳, 邵金良, 罗红. 7种云南野生食用菌的氨基酸组成比较分析及营养评价. 食品安全质量检测学报, 2016, 7(10): 3912-3917.
YANG X K, WANG L X, LIU Y F, SHAO J L, LUO H. Composition comparison and nutritional evaluation of amino acids in 7 kinds of wild edible mushrooms from Yunnan province. Journal of Food Safety & Quality, 2016, 7(10): 3912-3917. (in Chinese)
[50]
田颖刚, 李慧, 杨亚杰, 胡清清, 陈露露, 赵茹. 乌骨鸡蛋与普通鸡蛋品质特征和氨基酸组成比较. 南昌大学学报(理科版), 2018, 42(3): 231-235.
TIAN Y G, LI H, YANG Y J, HU Q Q, CHEN L L, ZHAO R. Comparison of quality characteristics and amino acid composition of eggs from black-bone silky fowl and common chicken. Journal of Nanchang University (Natural Science), 2018, 42(3): 231-235. (in Chinese)
[51]
龚卫华, 彭欢, 贺建武, 胡美忠, 胡娟, 蓝道英. 杜仲叶提取物对湘黄土鸡蛋品质、营养成分及血清抗氧化能力的影响. 中国饲料, 2022(22): 114-119.
GONG W H, PENG H, HE J B, HU M Z, HU J, LAN D Y. Effects of Eucommia leaves extract on egg quality, nutritional composition and serum antioxidant indexes of Xiangloess chickens. China Feed, 2022(22):114-119. (in Chinese)
[52]
陈雪梅, 唐晓姝, 胡博. 鹰嘴纳豆粉对三黄鸡生产性能、蛋品质和营养成分的影响. 中国家禽, 2023, 45(9): 52-59.
CHEN X M, TANG X S, HU B. Effects of chickpea natto powder on production performance, egg quality and nutritional components of Sanhuang chicken. China Poultry, 2023, 45(9): 52-59. (in Chinese)
[53]
陈达图, 李瑞, 胡官波, 贺喜, 张石蕊. 大米蛋白的营养价值与开发利用. 中国饲料, 2013(10): 37-40.
CHEN D T, LI R, HU G B, HE X, ZHANG S R. Nutritional value of rice protein and its development and utilization. China Feed, 2013(10): 37-40. (in Chinese)
[54]
郭艳, 曾里. 大米蛋白营养价值和提取分离方法的研究进展. 食品与发酵科技, 2010, 46(1): 31-34.
GUO Y, ZENG L. The nutritional value and extraction of rice protein. Food and Fermentation Science & Technology, 2010, 46(1): 31-34. (in Chinese)
[55]
秦那日苏. 葵花籽蛋白脱色工艺及其结构、功能特性的研究[D]. 内蒙古: 内蒙古农业大学, 2021.
QIN N. Study on the decolorization technology of sunflower seed protein and its structural and functional properties[D]. Hohhot: Inner Mongolia Agricultural University, 2021. (in Chinese)
[56]
李栋玉, 王媛, 胡粉娥, 晏翠琼. 红外光谱结合曲线拟合分析对两种红菇的研究. 曲靖师范学院学报, 2020, 39(3): 41-46.
LI D Y, WANG Y, HU F E, YAN B Q. Study on two species of Russula by infrared spectroscopy combined with curve-fitting analysis. Journal of Qujing Normal University, 2020, 39(3): 41-46. (in Chinese)
[57]
ESTEVES C S M, DE REDROJO E M M, LUIS GARCÍA MANJÓN J, MORENO G, ANTUNES F E, MONTALVO G, ORTEGA-OJEDA F E. Combining FTIR-ATR and OPLS-DA methods for magic mushrooms discrimination. Forensic Chemistry, 2022, 29: 100421.
[58]
XIAO K P, ZHANG J W, PAN L Q, TU K. Investigation of 3D printing product of powder-based white mushroom incorporated with soybean protein isolate as dysphagia diet. Food Research International, 2024, 175: 113760.
[59]
彭惜媛. 12种种子类药材多级红外光谱分析与鉴定[D]. 佳木斯: 佳木斯大学, 2015.
PENG X Y. Analysis and identification of twelve seeds traditional Chinese medicine by multilevel infrared spectra[D]. Jiamusi: Jiamusi University, 2015. (in Chinese)
[60]
李霞, 张丹, 沈飞, 青会, 杨洋. 4种固定食用菌加工废弃物吸附剂对水中重金属Hg2+的吸附. 应用与环境生物学报, 2017, 23(5): 879-885.
LI X, ZHANG D, SHEN F, QING H, YANG Y. Biosorption of mercury (Hg2+) from water by immobilized residues from four types of edible mushroom. Chinese Journal of Applied and Environmental Biology, 2017, 23(5): 879-885. (in Chinese)
[61]
KREMMYDA A, MACNAUGHTAN W, ARAPOGLOU D, ELIOPOULOS C, METAFA M, HARDING S E, ISRAILIDES C. Mushroom and cereal β-D-glucan solid state NMR and FTIR datasets. Data in Brief, 2022, 40: 107765.
[62]
赵帅群. 牡丹花和牡丹皮的傅里叶变换红外光谱研究[D]. 昆明: 云南师范大学, 2015.
ZHAO S Q. Fourier transform infrared spectroscopic study of peony flowers and peony peels[D]. Kunming: Yunnan Normal University, 2015. (in Chinese)
[63]
YANG J, SHAO J Q, DUAN Y Q, GENG F, JIN W P, ZHANG H H, PENG D F, DENG Q C. Insights into digestibility, biological activity, and peptide profiling of flaxseed protein isolates treated by ultrasound coupled with alkali cycling. Food Research International, 2024, 190: 114629.
[64]
陈智仙, 张海波, 张双庆, 张彦. 3种不同来源蛋白质的氨基酸组成及体外动态消化研究. 河南工业大学学报(自然科学版), 2019, 40(2): 62-68.
CHEN Z X, ZHANG H B, ZHANG S Q, ZHANG Y. Amino acid composition analysis and in vitro dynamic digestion of proteins from three different sources. Journal of Henan University of Technology (Natural Science Edition), 2019, 40(2): 62-68. (in Chinese)
[65]
冶梓芩, 王进英, 马桂兰, 马金鸽, 宿江洋. 不同油料蛋白品质特性对比研究. 中国粮油学报, 2024, 39(12): 97-105.
YE Z Q, WANG J Y, MA G Y, MA J G, SU J Y. Comparative study on protein quality characteristics of different oil crops. Journal of the Chinese Cereals and Oils, 2024, 39(12): 97-105. (in Chinese)
[66]
夏轩泽, 李言, 钱海峰, 张晖, 王立. 改性处理对豌豆蛋白结构和功能特性的影响. 食品科学技术学报, 2021, 39(5): 32-38, 48.
XIA X Z, LI Y, QIAN H F, ZHANG H, WANG L. Effects of modification treatments on structural characteristics and functional properties of pea protein. Journal of Food Science and Technology, 2021, 39(5): 32-38, 48. (in Chinese)
[67]
温琦, 翟金星, 蒋微, 翟秀超. 豌豆蛋白物理改性技术研究进展. 现代食品, 2024, 30(13): 132-135.
WEN Q, ZHAI J X, JIANG W, ZHAI X C. Research progress on physical modification technology of pea protein. Modern Food, 2024, 30(13): 132-135. (in Chinese)
[1] LI WeiJing, WANG HongYuan, XU Yang, LI Hao, ZHAI LiMei, LIU HongBin. Microbial Community Structure Characteristics at the Water-Soil Interface in Rice-Crab Co-Culture System [J]. Scientia Agricultura Sinica, 2024, 57(18): 3551-3567.
[2] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[3] LIU Hong,GUO YuJie,XU Xiong,LI Xia,ZHANG HongRu,QI LiWei,SUN XueMei,ZHANG ChunHui. Preparation, Physicochemical Characterization and Bioactivity Comparison of Different Livestock and Poultry Bone Peptides [J]. Scientia Agricultura Sinica, 2022, 55(13): 2629-2642.
[4] WANG YuLin,LEI Lin,XIONG WenWen,YE FaYin,ZHAO GuoHua. Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour [J]. Scientia Agricultura Sinica, 2021, 54(19): 4207-4217.
[5] GU MingHui,YANG ZeSha,MA Ping,GE XinYu,LIU YongFeng. Application of Ultrasound-Assisted Thawing in the Role of Maintaining Physicochemical Properties and Reducing Protein Loss in Mutton During Multiple Freeze-Thaw Cycles [J]. Scientia Agricultura Sinica, 2021, 54(18): 3970-3983.
[6] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[7] GOU XiaoJu, TIAN You, GUO YuRong, YANG Xi, HOU YanJie, PING JiaXin, LI Ting. Analysis and Evaluation on Quality of Not from Concentrate Apple Juices in Different Maturation Period [J]. Scientia Agricultura Sinica, 2018, 51(19): 3778-3790.
[8] LIU XiWei, ZHANG Min, ZHANG YuChun, YANG Min, SONG XiaoJun, CAI RuiGuo. Effects of Shading at Grain Filling Stages on Starch Components and Physicochemical Properties of the Waxy Wheat and Non-Waxy Wheat [J]. Scientia Agricultura Sinica, 2017, 50(9): 1582-1593.
[9] GAO Xi-xi, ZHANG Shu-wen, LU Jing, LIU Lu, PANG Xiao-yang, YUE Xi-qing, Lü Jia-ping. Chemical Compositions and Physicochemical Properties of Milk Fat and Fractions Obtained by Short-Path Distillation [J]. Scientia Agricultura Sinica, 2016, 49(11): 2183-2193.
[10] GENG Yi-wen, HA Yi-ming, JIN Jing, LI Qing-peng. Apple Pomace Dietary Fibre Modification by Hydrogen Peroxide [J]. Scientia Agricultura Sinica, 2015, 48(19): 3979-3988.
[11] SU Dong-Xiao, LIAO Sen-Tai, ZHANG Ming-Wei, HOU Fang-Li, TANG Xiao-Jun, WEI Zhen-Cheng, ZHANG Rui-Fen, CHI Jian-Wei, ZHANG Yan, DENG Yuan-Yuan. Effect of Spray Drying Processing on the Physicochemical Properties of Instant Longan Powder [J]. Scientia Agricultura Sinica, 2011, 44(18): 3830-3839.
[12] ,,. Formation and Physicochemical Properties of Pressure-Induced Gels [J]. Scientia Agricultura Sinica, 2005, 38(08): 1652-1657 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!