Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (12): 2399-2409.doi: 10.3864/j.issn.0578-1752.2020.12.008

• PLANT PROTECTION • Previous Articles     Next Articles

Resistance Level and Mechanism of Descurainia sophia to Florasulam in Wheat Field of Shandong Province

GAO XingXiang,ZHANG YueLi,LI Mei(),LI Jian,FANG Feng   

  1. Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Ji’nan 250100
  • Received:2019-12-30 Accepted:2020-03-02 Online:2020-06-16 Published:2020-06-25
  • Contact: Mei LI E-mail:limei9909@163.com

Abstract:

【Background】 Descurainia sophia is the most widely distributed and harmful broad-leaved weed in winter wheat field, and florasulam is the most widely used ALS inhibitor herbicide for controlling broad-leaved weeds. After several years of application, the control effect of florasulam on D. sophia has been found to decline in some wheat fields, which may be related to the resistance. 【Objective】 The objective of this study is to clarify the resistance level and mechanism of D. sophia to florasulam, and to provide theoretical basis for the establishment of precise regional control of broad-leaved weeds in wheat field. 【Method】 A total of 40 populations of D. sophia were collected from winter wheat fields. Whole-plant dose response experiments were conducted to determine the resistance level of 40 populations to florasulam, tribenuron-methyl and MCPA in the greenhouse. At the same time, according to the ALS gene sequence of D. sophia, the genomic DNA of a single plant with high resistance to florasulam was extracted. The ALS gene sequences were obtained and compared with that of sensitive type Arabidopsis thaliana to find out the mutation site and the resistance mechanism. 【Result】 The results of resistance level determination showed that 32 of the 40 D. sophia populations were sensitive to florasulam, accounting for 80.00%. There were 3, 3 and 2 populations of low resistance, medium resistance and high resistance, respectively. JN-1, JNI-2 and LY-2 belonged to low resistance populations. Three populations LC-3, LY-4 and YT-1 belonged to medium resistance with resistance index (RI) of 49.00, 26.44 and 21.09, respectively. BZ-1 and DZ-3 belonged to high resistance populations with RI of 52.00 and 194.00, respectively. The ALS sequence analysis showed that there were mutations from CCT (pro) to TCT (Ser) or CTT (Leu) in amino acid 197 of ALS gene in BZ-1, while TGG (Trp) to TTG (Leu) in amino acid 574 of ALS gene in DZ-3. In addition, 19 of the 40 D. sophia populations were resistant to tribenuron-methyl, accounting for 47.50%, among them, 11 populations were low resistance, 6 populations were medium resistance with RI of 38.05, 13.55, 11.54, 10.45, 11.50, 11.02, and DZ-3 and LY-4 belonged to high resistance populations with RI of 244.75 and 68.50, respectively. All 40 populations were sensitive to MCPA. 【Conclusion】 Among the 40 populations of D. sophia collected from wheat fields in Shandong Province, 20.00% of them are resistance to florasulam, and the substitutions of amino acids occur in different positions in the populations with high resistance to florasulam. The resistance of D. sophia to tribenuron-methyl is still very serious, but all the populations are not resistant to MCPA. In view of the resistance area of D. sophia, the alternative and mixed use of herbicides with multiple mechanisms should be promoted, which can not only delay and control the development of resistance in weeds, but also expand the weed control spectrum and reduce the use of herbicides.

Key words: florasulam, Descurainia sophia, resistance level, resistance mechanism

Table 1

Collection sites information of 40 D. sophia populations"

序号
Number
采集地点
Collection site
序号
Number
采集地点
Collection site
BZ-1 滨州市邹平县台子镇
Taizi Town, Zouping County, Binzhou City
LY-2 临沂市郯城县胜利镇
Shengli Town, Tancheng County, Linyi City
BZ-2 滨州市惠民县胡集镇
Huji Town, Huimin County, Binzhou City
LY-3 临沂市费县探义镇
Tanyi Town, Fei County, Linyi City
DY-1 东营市利津县北宋镇
Beisong Town, Lijin County, Dongying City
LY-4 临沂市沂南县青驼镇
Qingtuo Town, Yi’nan County, Linyi City
DZ-1 德州市庆云县常家镇
Changjia Town, Qingyun County, Dezhou City
QD-1 青岛市莱西区河头店镇
Hetoudian Town, Laixi District, Qingdao City
DZ-2 德州市平原县恩城镇
Encheng Town, Pingyuan County, Dezhou City
QD-2 青岛市平度市云山镇
Yunshan Town, Pingdu County, Qingdao City
DZ-3 德州市武城县武城镇
Wucheng Town, Wucheng County, Dezhou City
RZ-1 日照市莒县小店镇
Xiaodian Town, Ju County, Rizhao City
HZ-1 菏泽市成武县张楼镇
Zhanglou Town, Chengwu County, Heze City
RZ-2 日照市五莲县西湖镇
Xihu Town, Wulian County, Rizhao City
HZ-2 菏泽市巨野县田桥镇
Tianqiao Town, Juye County, Heze City
TA-1 泰安市东平县大洋镇
Dayang Town, Dongping County, Taian City
JN-1 济南市长清区张夏镇
Zhangxia Town, Changqing District, Ji’nan City
TA-2 泰安市肥城县老城街道
Laocheng Street, Feicheng County, Taian City
JN-2 济南市历城区王舍人镇
Wangsheren Town, Licheng District, Ji’nan City
TA-3 泰安市宁阳县磁窑镇
Ciyao Town, Ningyang County, Taian City
JN-3 济南市章丘区刁镇
Diao Town, Zhangqiu District, Ji’nan City
WF-1 潍坊市潍城区于河街道
Yuhe Street, Weicheng District, Weifang City
JNI-1 济宁市汶上县郭仓镇
Guocang Town, Wenshang County, Jining City
WF-2 潍坊市昌邑市卜庄镇
Bozhuang Town, Changyi County, Weifang City
JNI-2 济宁市梁山县韩岗镇
Hangang Town, Liangshan County, Jining City
WF-3 潍坊市临朐县沂山镇
Yishan Town, Linqu County, Weifang City
JNI-3 济宁市嘉祥县疃里镇
Tuanli Town, Jiaxiang County, Jining City
WH-1 威海市乳山市夏村镇
Xiacun Town, Rushan County, Weihai City
JNI-4 济宁市任城区南张镇
Nanzhuang Town, Rencheng District, Jining City
YT-1 烟台市莱州市沙河镇
Shahe Town, Laizhou County, Yantai City
LC-1 聊城市莘县古城镇
Gucheng Town, Shen County, Liaocheng City
YT-2 烟台市莱阳市河头店镇
Hetoudian Town, Laiyang County, Yantai City
LC-2 聊城市阳谷县西湖镇
Xihu Town, Yanggu County, Liaocheng City
ZB-1 淄博市周村区南郊镇
Nanjiao Town, Zhoucun District, Zibo City
LC-3 聊城市东昌府区侯营镇
Houying Town, Dongchangfu District, Liaocheng City
ZB-2 淄博市临淄区齐陵街道
Qiling Street, Linzi District, Zibo City
LW-1 莱芜市莱城区口镇
Kou Town, Laicheng District, Laiwu City
ZZ-1 枣庄市滕州市鲍沟镇
Baogou Town, Tengzhou County, Zaozhuang City
LY-1 临沂市兰陵县卢柞镇
Luzuo Town, Lanling County, Linyi City
ZZ-2 枣庄市薛城区周营镇
Zhouying Town, Xuecheng District, Zaozhuang City

Table 2

Resistance level of D. sophia populations to florasulam"

序号
Number
回归方程
Regression equation (y=)
相关系数
Correlation coefficient
GR50 (g·hm-2)
(95% CL)
相对抗性指数
RI
BZ-1 3.0871+2.5252x 0.9220 5.72 (3.89-10.98) 52.00
BZ-2 6.7548+2.0988x 0.8926 0.15 (0.01-0.39) 1.36
DY-1 6.1746+1.2088x 0.9405 0.11 (0.02-0.26) 1.00
DZ-1 6.1210+1.8228x 0.8825 0.24 (0.08-0.45) 2.18
DZ-2 6.1178+1.5045x 0.8717 0.18 (0.001-0.62) 1.64
DZ-3 3.7060+0.9736x 0.8519 21.34 (13.81-39.62) 194.00
HZ-1 5.6433+1.2505x 0.9203 0.31 (0.14-0.51) 2.82
HZ-2 6.2837+2.3134x 0.8914 0.28 (0.10-0.50) 2.55
JN-1 5.4469+1.6999x 0.9475 0.55 (0.33-0.78) 5.00
JN-2 5.5627+1.0454x 0.8902 0.29 (0.002-0.97) 2.64
JN-3 6.1607+1.3459x 0.9459 0.14 (0.03-0.31) 1.27
JNI-1 5.6161+2.1229x 0.9679 0.51 (0.30-0.74) 4.64
JNI-2 5.3038+1.5719x 0.9333 0.64 (0.18-1.20) 5.82
JNI-3 6.4349+1.5358x 0.8804 0.12 (0.01-0.30) 1.09
JNI-4 6.5989+1.6727x 0.9630 0.11 (0.01-0.31) 1.00
LC-1 6.6323+1.9998x 0.8911 0.15 (0.02-0.38) 1.36
LC-2 6.2404+1.7165x 0.9655 0.19 (0.05-0.39) 1.73
LC-3 3.3624+2.2387x 0.9631 5.39 (3.89-8.22) 49.00
LW-1 5.6180+1.4674x 0.9352 0.38 (0.19-0.59) 3.45
LY-1 6.4307+2.3490x 0.8925 0.25 (0.07-0.48) 2.27
LY-2 5.3477+1.7628x 0.9479 0.64 (0.41-0.87) 5.82
LY-3 6.0852+1.7614x 0.9592 0.24 (0.08-0.45) 2.18
LY-4 4.0274+2.0848x 0.9589 2.93 (2.48-3.44) 26.64
QD-1 5.9423+1.3467x 0.9401 0.20 (0.07-0.38) 1.82
QD-2 6.0594+1.2737x 0.9363 0.15 (0.04-0.32) 1.27
RZ-1 5.4556+1.6946x 0.9474 0.54 (0.15-1.01) 4.91
RZ-2 6.0120+1.6168x 0.8734 0.24 (0.004-0.70) 2.18
TA-1 5.9847+1.6603x 0.8744 0.26 (0.01-0.72) 2.36
TA-2 6.0133+1.9703x 0.8839 0.31 (0.13-0.52) 2.82
TA-3 6.1886+1.3238x 0.9432 0.13 (0.03-0.29) 1.18
WF-1 6.4373+1.8136x 0.8868 0.16 (0.03-0.37) 1.45
WF-2 6.4515+2.7972x 0.8939 0.30 (0.10-0.54) 2.73
WF-3 6.1546+2.1186x 0.8883 0.29 (0.11-0.50) 2.64
WH-1 5.7762+1.1081x 0.9022 0.20 (0.07-0.38) 1.82
YT-1 4.5119+1.3342x 0.8726 2.32 (1.26-3.85) 21.09
YT-2 6.2982+1.7011x 0.9642 0.17 (0.04-0.37) 1.55
ZB-1 5.4225+1.4153x 0.9245 0.50 (0.13-0.98) 4.55
ZB-2 6.2430+1.5091x 0.8754 0.15 (0.03-0.33) 1.36
ZZ-1 6.5223+2.1754x 0.8918 0.20 (0.04-0.43) 1.82
ZZ-2 6.0763+1.4651x 0.9454 0.18 (0.05-0.37) 1.64

Table 3

Resistance level of D. sophia populations to tribenuron-methyl"

序号
Number
回归方程
Regression equation (y=)
相关系数
Correlation coefficient
GR50 (g·hm-2)
(95% CL)
相对抗性指数
RI
BZ-1 4.4592+0.4070x 0.9305 21.31 (7.80-41.91) 38.05
BZ-2 3.4995+2.1764x 0.8938 4.89 (1.73-9.05) 8.73
DY-1 4.5408+1.5010x 0.8883 2.02 (0.27-5.44) 3.61
DZ-1 4.5400+1.3410x 0.8811 2.20 (0.42-5.40) 3.93
DZ-2 3.7377+1.7915x 0.8886 5.07 (1.96-9.11) 9.05
DZ-3 2.7435+1.0560x 0.9480 137.06 (58.29-448.11) 244.75
HZ-1 4.0109+1.4039x 0.9423 0.56 (0.03-11.73) 1.00
HZ-2 4.0697+1.2949x 0.9481 5.23 (2.24-9.17) 9.34
JN-1 4.1869+0.9237x 0.9913 7.59 (3.73-12.60) 13.55
JN-2 4.7999+0.9194x 0.9239 1.65 (0.34-4.16) 2.95
JN-3 4.2133+1.3990x 0.9533 3.65 (1.18-7.25) 6.52
JNI-1 4.5819+1.1696x 0.9575 2.28 (0.53-5.29) 4.07
JNI-2 3.4317+1.9362x 0.8894 6.46 (2.96-10.70) 11.54
JNI-3 4.4136+1.5958x 0.8898 2.33 (0.37-5.92) 4.16
JNI-4 4.1771+1.2621x 0.9501 4.49 (1.76-8.23) 8.02
LC-1 3.7939+1.5722x 0.9610 5.85 (2.59-9.96) 10.45
LC-2 4.4694+1.8515x 0.8941 1.93 (0.12-6.05) 3.45
LC-3 4.2146+0.9707x 0.9104 6.44 (3.02-10.96) 11.50
LW-1 4.8448+0.7822x 0.8931 1.58 (0.33-4.02) 2.82
LY-1 4.3215+1.7573x 0.8925 2.43 (0.35-6.26) 4.34
LY-2 4.7095+1.5411x 0.8909 1.54 (0.10-5.04) 2.75
LY-3 4.4512+1.5314x 0.8883 2.28 (0.37-5.77) 4.07
LY-4 3.3832+1.0208x 0.8737 38.36 (18.32-67.62) 68.50
QD-1 4.0803+1.2919x 0.9503 5.15 (2.19-9.07) 9.20
QD-2 3.7652+1.5620x 0.9589 6.17 (2.83-10.34) 11.02
RZ-1 4.3648+1.5478x 0.8879 2.57 (0.50-6.12) 4.59
RZ-2 4.5092+1.3450x 0.8808 2.32 (0.47-5.55) 4.14
TA-1 3.9601+1.6906x 0.8879 4.12 (1.35-8.00) 7.36
TA-2 3.2026+2.4882x 0.8944 5.28 (1.95-9.52) 9.43
TA-3 4.2321+1.4666x 0.9509 3.34 (0.96-6.92) 5.96
WF-1 4.8405+1.4052x 0.8883 1.30 (0.07-4.49) 2.32
WF-2 4.7478+1.2172x 0.8773 1.61 (0.23-4.46) 2.88
WF-3 4.4687+1.5162x 0.9677 2.24 (0.36-5.70) 4.00
WH-1 4.7373+1.4737x 0.8894 1.51 (0.10-4.85) 2.70
YT-1 4.3582+0.9489x 0.9037 4.75 (1.94-8.67) 8.48
YT-2 4.6091+1.5464x 0.8902 1.79 (0.17-5.28) 3.20
ZB-1 4.4016+1.2996x 0.8750 2.89 (0.03-10.85) 5.16
ZB-2 4.3259+1.8489x 0.8936 2.32 (0.26-6.31) 4.14
ZZ-1 4.8315+1.4640x 0.8900 1.30 (0.06-4.64) 2.32
ZZ-2 4.3491+1.7430x 0.8924 2.36 (0.32-6.18) 4.21

Table 4

Resistance level of D. sophia populations to MCPA"

序号
Number
回归方程
Regression equation (y=)
相关系数
Correlation coefficient
GR50 (g·hm-2)
(95% CL)
相对抗性指数
RI
BZ-1 2.0945+2.5738x 0.8928 13.45 (2.43-29.10) 3.61
BZ-2 3.3409+1.6892x 0.8819 9.60 (1.80-21.89) 2.57
DY-1 3.9377+1.3693x 0.8715 5.97 (0.69-16.27) 1.60
DZ-1 4.3261+1.0307x 0.9189 4.51 (0.60-12.56) 1.21
DZ-2 3.7099+1.5489x 0.8802 6.91 (0.73-18.38) 1.85
DZ-3 3.4617+1.7590x 0.8866 7.49 (0.66-20.53) 2.01
HZ-1 4.2287+0.9926x 0.9061 5.98 (1.17-14.62) 1.60
HZ-2 4.9736+0.7651x 0.8886 3.88 (0.40-12.68) 1.04
JN-1 3.2623+1.7257x 0.8826 10.16 (2.04-22.62) 2.72
JN-2 3.7622+1.4396x 0.9516 7.24 (1.10-18.09) 1.94
JN-3 3.4954+1.7896x 0.8880 6.93 (0.41-20.41) 1.86
JNI-2 3.3834+1.6609x 0.8811 9.40 (1.75-21.55) 2.52
JNI-2 3.6806+1.4785x 0.9582 7.81 (1.29-18.91) 2.09
JNI-3 3.4141+1.6799x 0.8826 8.79 (1.39-21.08) 2.36
JNI-4 4.3825+1.0806x 0.9246 3.73 (0.32-11.68) 1.00
LC-2 3.7705+1.5307x 0.8802 6.36 (0.59-17.83) 1.71
LC-2 3.5698+1.4654x 0.8705 9.46 (0.03-34.75) 2.54
LC-3 3.2963+1.5965x 0.8749 11.67 (3.24-23.58) 3.13
LW-1 3.0031+2.1808x 0.8924 8.24 (0.33-24.44) 2.21
LY-1 3.4446+1.8365x 0.8889 7.03 (0.38-20.88) 1.88
LY-2 3.4498+1.6801x 0.8831 8.37 (1.18-20.70) 2.24
LY-3 4.0256+1.3975x 0.8761 4.98 (0.33-15.47) 1.34
LY-4 3.0374+1.8191x 0.8837 11.99 (2.97-24.79) 3.21
QD-1 3.1072+1.9785x 0.8897 9.05 (0.95-23.20) 2.43
QD-2 3.1567+1.9338x 0.8890 8.98 (1.00-22.84) 2.41
RZ-1 3.5592+1.7137x 0.8860 6.93 (0.52-19.76) 1.86
RZ-2 4.1233+1.4701x 0.8825 3.95 (0.07-15.40) 1.06
TA-1 3.2322+1.6788x 0.8794 11.30 (2.83-23.52) 3.03
TA-2 3.7666+1.4893x 0.8774 6.73 (0.80-17.88) 1.80
TA-3 3.0389+2.0898x 0.8914 8.68 (0.61-23.81) 2.33
WF-1 4.2364+1.2589x 0.9485 4.04 (0.24-13.34) 1.08
WF-2 3.5311+1.8064x 0.8888 6.50 (0.27-20.34) 1.74
WF-3 3.5460+1.6892x 0.8849 7.26 (0.68-19.82) 1.95
WH-1 3.2738+1.8467x 0.8876 8.60 (0.98-21.99) 2.31
YT-1 3.4549+1.8182x 0.8884 7.08 (0.42-20.75) 1.90
YT-2 3.7438+1.3591x 0.9397 8.40 (1.82-18.96) 2.25
ZB-1 3.0505+1.6576x 0.9504 15.00 (5.39-27.35) 4.02
ZB-2 3.6460+1.7483x 0.8881 5.95 (0.20-19.50) 1.60
ZZ-1 3.3559+1.8120x 0.8873 8.08 (0.81-21.35) 2.17
ZZ-2 4.2640+1.1111x 0.9285 4.60 (0.55-13.04) 1.23

Table 5

Analysis of ALS gene mutations in highly resistant populations"

序号Number 相对抗性指数RI ALS基因突变ALS gene mutation 检出比例Detection rate
BZ-1 52.00 Pro-197-Leu;Pro-197-Ser Pro-197-Leu,40%;Pro-197-Ser,60%
DZ-3 194.00 Trp-574-Leu 100%
DY-1 1.00 Wild type
[1] 高兴祥, 李美, 房锋, 李健. 河南省冬小麦田杂草组成及群落特征. 麦类作物学报, 2016,36(10):1402-1408.
GAO X X, LI M, FANG F, LI J. Species composition and characterization of weed community in winter wheat fields in Henan Province. Journal of Triticeae Crops, 2016,36(10):1402-1408. (in Chinese)
[2] 高兴祥, 李美, 房锋, 张悦丽, 孙作文, 齐军山. 山东省小麦田杂草组成及群落特征. 草业学报, 2014,23(5) : 92-98.
doi: 10.11686/cyxb20140510
GAO X X, LI M, FANG F, ZHANG Y L, SUN Z W, QI J S. Species composition and characterization of weed communities in wheat fields in Shandong Province. Acta Prataculturae Sinica, 2014,23(5):92-98. (in Chinese)
doi: 10.11686/cyxb20140510
[3] 李秉华, 王贵启, 魏守辉, 樊翠芹, 黄红娟, 张朝贤. 河北省冬小麦田杂草群落特征. 植物保护学报, 2013,40(1):83-88.
LI B H, WANG G Q, WEI S H, FAN C Q, HUANG H J, ZHANG C X. Characterization of weed community in winter wheat in Hebei Province. Journal of Plant Protection, 2013,40(1):83-88. (in Chinese)
[4] 高兴祥, 李美, 高宗军, 房锋, 张悦丽, 齐军山. 山东省小麦田播娘蒿对苯磺隆的抗性测定. 植物保护学报, 2014,41(3):373-378.
GAO X X, LI M, GAO Z J, FANG F, ZHANG Y L, QI J S. Determination of flixweed (Descurainia sophia) resistance to tribenuron-methyl in Shandong Province. Journal of Plant Protection, 2014,41(3):373-378. (in Chinese)
[5] 房锋, 李美, 高兴祥, 李健, 李燕. 麦田播娘蒿发生动态及其对小麦产量构成因素的影响. 中国农业科学, 2015,48(13):2559-2568.
doi: 10.3864/j.issn.0578-1752.2015.13.008
FANG F, LI M, GAO X X, LI J, LI Y. Occurrence of flixweed (Descurainia sophia) in wheat fields and its influence on wheat yield components. Scientia Agricultura Sinica, 2015,48(13):2559-2568. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.13.008
[6] 邓维. 抗苯磺隆播娘蒿抗性机理及抗性突变对乙酰乳酸合成酶功能影响[D]. 北京: 中国农业大学, 2017.
DENG W. The resistance mechanisms of tribenuron-methyl-resistant flixweed (Descurania sophia L.) and effects of resistance-endowing mutations on ALS functionality[D]. Beijing: China Agricultural University, 2017. (in Chinese)
[7] 苏少泉. 三唑嘧啶磺酰胺类除草剂新品种——双氟磺草胺. 世界农药, 2001,23(4):53-54.
SU S Q. Florasulam: A new triazole pyrimidine sulfonamide herbicide. World Pesticides, 2001,23(4):53-54. (in Chinese)
[8] 李美, 高兴祥, 高宗军, 赵维, 吴加军, 李茂昇. 双氟磺草胺、2甲4氯联合作用及作物安全性评价. 植物保护学报, 2013,40(6):557-563.
LI M, GAO X X, GAO Z J, ZHAO W, WU J J, LI M S. Weed control effect and crop response to florasulam plus MCPA. Journal of Plant Protection, 2013,40(6):557-563. (in Chinese)
[9] 侯珍, 谢娜, 董秀霞, 张晓芳, 李凌绪, 王金信. 双氟磺草胺的除草活性及对不同小麦品种的安全性评价. 植物保护学报, 2012,39(4):357-363.
HOU Z, XIE N, DONG X X, ZHANG X F, LI L X, WANG J X. Evaluation of herbicidal activity of florasulam and its safety to various wheat varieties. Journal of Plant Protection, 2012,39(4):357-363. (in Chinese)
[10] 李美, 高兴祥, 房锋, 李健, 吴加军, 李茂昇. 氟氯吡啶酯与双氟磺草胺复配的田间除草效果及其对作物安全性评价. 植物保护学报, 2016,43(3):514-522.
LI M, GAO X X, FANG F, LI J, WU J J, LI M S. Weed control effect and safety to crops of a mixed formulation (halauxifen-methyl 10% + florasulam 10%). Journal of Plant Protection, 2016,43(3):514-522. (in Chinese)
[11] 马鹏生. 猪殃殃抗双氟磺草胺的生理机制研究. 山东农业大学学报(自然科学版), 2014,45(5):778-781.
MA P S. Study on the physiological mechanism of the resistance of Galium aparine L. against florasulam. Journal of Shandong Agricultural University (Natural Science Edition), 2014,45(5):778-781. (in Chinese)
[12] LIAN L, LU X T, WU J L, ZHANG H J. A novel alternative herbicide bipyrazone as for the control of resistant shepherd’s purse (Capsella bursa-pastoris (L.) Medik.) in wheat. Chinese Journal of Pesticides Science, DOI: 10.16801/j.issn.1008-7303.2020.0034.
doi: 10.1126/science.1067226 pmid: 11809972
[13] DENG W, LIU M J, YANG Q, MEI Y, LI X F, ZHENG M Q. Tribenuron-methyl resistance and mutation diversity of Pro197 in flixweed (Descurainia sophia L.) accessions from China. Pesticide Biochemistry and Physiology, 2015,117:68-74.
doi: 10.1016/j.pestbp.2014.10.012 pmid: 25619914
[14] CUI H L, ZHANG C X, WEI S H, ZHANG H J, LI X J, ZHANG Y Q, WANG G Q. Acetolactate synthase gene proline (197) mutations confer tribenuron-methyl resistance in flixweed (Descurainia sophia) populations from China. Weed Science, 2011,59(3):376-379.
doi: 10.1614/WS-D-10-00099.1
[15] CUI H L, ZHANG C X, ZHANG H J, LIU X, LIU Y, WANG G Q, HUANG H J, WEI S H. Confirmation of flixweed (Descurainia sophia) resistance to tribenuron in China. Weed Science, 2008,56(6):775-779.
doi: 10.1614/WS-08-058.1
[16] 许贤, 王贵启, 樊翠芹, 李秉华. 河北省境内播娘蒿对苯磺隆抗药性研究. 华北农学报, 2011,26(增刊):241-247.
XU X, WANG G Q, FAN C Q, LI B H. Confirmation of flixweed (Descurainia sophia) resistance to tribenuron-methyl in Hebei Province. Acta Agriculturae Boreali-Sinica, 2011,26(Suppl.):241-247. (in Chinese)
[17] 刘君良, 王金信, 刘伟堂, 金涛, 李小芳, 毕亚玲. 中国北方部分地区麦田荠菜对苯磺隆的抗性水平. 农药学学报, 2011,13(4):347-353.
LIU J L, WANG J X, LIU W T, JIN T, LI X F, BI Y L. Resistance level of Capsella bursa-pastoris to tribenuron-methyl in winter wheat fields in northern China. Chinese Journal of Pesticide Science, 2011,13(4):347-353. (in Chinese)
[18] 高新菊, 王恒亮, 马毅辉, 陈威, 秦光宇, 宋语娇. 河南省部分地区麦田荠菜对苯磺隆的抗性水平及抗性靶标分子机制. 植物保护学报, 2017,44(3):501-508.
GAO X J, WANG H L, MA Y H, CHEN W, QIN G Y, SONG Y J. Resistance of Capsella bursa-pastoris to tribenuron-methyl in winter wheat fields in some areas of Henan Province and its molecular mechanism. Journal of Plant Protection, 2017,44(3):501-508. (in Chinese)
[19] 张乐乐, 王倩, 王伟. 河南省麦田荠菜对苯磺隆的抗性及其交互抗性. 植物保护学报, 2018,45(3):536-542.
ZHANG L L, WANG Q, WANG W. Resistance to tribenuron-methyl and cross resistance in shepherd’s purse Capsella bursa-pastoris from wheat fields in Henan Province. Journal of Plant Protection, 2018,45(3):536-542. (in Chinese)
[20] ZHANG L L, GUO W L, LI Q, WU C X, ZHAO N, LIU W T, WANG J X. Tribenuron-methyl resistance and mutation diversity of the AHAS gene in shepherd’s purse (Capsella bursa-pastoris (L.) Medik.) in Henan Province, China. Pesticide Biochemistry and Physiology, 2017,143:239-245.
doi: 10.1016/j.pestbp.2017.05.007 pmid: 29183598
[21] 彭学岗, 王金信, 段敏, 杨纪辉. 中国北方部分冬麦区猪殃殃对苯磺隆的抗性水平. 植物保护学报, 2008,35(5):458-462.
PENG X G, WANG J X, DUAN M, YANG J H. The resistance to tribenuron-methyl in Galium aparine in winter wheat fields in northern China. Journal of Plant Protection, 2008,35(5):458-462. (in Chinese)
[22] 孙健, 王金信, 张宏军, 刘君良, 卞圣楠. 抗苯磺隆猪殃殃乙酰乳酸合成酶的突变研究. 中国农业科学, 2010,43(5):972-977.
SUN J, WANG J X, ZHANG H J, LIU J L, BIAN S N. Study on mutations in ALS of resistance to tribenuron-methyl in Galium aparine L. Scientia Agricultura Sinica, 2010,43(5):972-977. (in Chinese)
[23] 崔海兰, 王藏月, 徐林林, 李香菊. 猪殃殃对AHAS抑制剂靶标抗性的快速分子检测. 植物保护学报, 2016,43(6):1049-1054.
CUI H L, WANG C Y, XU L L, LI X J. Rapid molecular detection of the resistance of Galium aparine var. tenerum to AHAS inhibitors. Journal of Plant Protection, 2016,43(6):1049-1054. (in Chinese)
[24] 吴小虎, 王金信, 刘伟堂, 郭鹤久, 崔夕英, 陈业兵. 山东省部分市县麦田杂草麦家公Lithospermum arvense对苯磺隆的抗药性. 农药学学报, 2011,13(6):597-602.
WU X H, WANG J X, LIU W T, GUO H J, CUI X Y, CHEN Y B. Resistance of Lithospermum arvense to tribenuron-methyl in winter wheat fields in part of Shandong Province. Chinese Journal of Pesticide Science, 2011,13(6):597-602. (in Chinese)
[25] 王恒智, 白霜, 吴小虎, 吴翠霞, 刘伟堂, 王金信. 小麦田麦家公对苯磺隆的抗性机理. 植物保护学报, 2019,46(1):216-223.
WANG H Z, BAI S, WU X H, WU C X, LIU W T, WANG J X. Resistance mechanism of Lithospermum arvense L. to tribenuron-methyl in winter wheat field. Journal of Plant Protection, 2019,46(1):216-223. (in Chinese)
[26] GRSSEL J, SEGEL L A. Herbicide rotations and mixtures: Effective strategies to delay resistance. Symposium Series American Chemical Society, 1990,421:430-458.
[27] 李永丰, 李宜慰, 刘正道, 曾宪彬. 抗药性杂草种群的发展及其防治对策. 江西农业大学学报, 1999,21(1):42-46.
LI Y F, LI Y W, LIU Z D, ZENG X B. New developments in herbicide resistance in weed species and management strategies. Acta Agriculturae Universitatis Jiangxiensis, 1999,21(1):42-46. (in Chinese)
[28] 李健, 李美, 高兴祥, 房锋, 董连红. 杂草抗药性及其机理研究进展. 山东农业科学, 2016,48(12):165-170.
LI J, LI M, GAO X X, FANG F, DONG L H. Herbicide resistance and its mechanism of weed. Shandong Agricultural Sciences, 2016,48(12) : 165-170. (in Chinese)
[29] 周清元, 王倩, 叶桑, 崔明圣, 雷维, 郜欢欢, 赵愉风, 徐新福, 唐章林, 李加纳, 崔翠. 苯磺隆胁迫下油菜萌发期相关性状的全基因组关联分析. 中国农业科学, 2019,52(3):399-413.
doi: 10.3864/j.issn.0578-1752.2019.03.002
ZHOU Q Y, WANG Q, YE S, CUI M S, LEI W, GAO H H, ZHAO Y F, XU X F, TANG Z L, LI J N, CUI C. Genome-wide association analysis of tribenuron-methyl tolerance related traits in Brassica napus L. under germination. Scientia Agricultura Sinica, 2019,52(3):399-413. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.03.002
[30] YU Q, POWLES S B. Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production. Plant Physiology, 2014,166(3):1106-1118.
doi: 10.1104/pp.114.242750
[31] YU Q, POWLES S B. Resistance to AHAS inhibitor herbicides: Current understanding. Pest Management Science, 2014,70(9):1340-1350.
doi: 10.1002/ps.3710
[32] TRANEL P J, WRIGHT T R, HEAP I M. Mutations in herbicide-resistant weeds to ALS inhibitors. http://www.weedscience.org/Mutations/ MutationDisplayAll.aspx.
[33] 黄兆峰, 刘倩, 王园园, 姜翠兰, 周欣欣. 杂草对ALS抑制剂抗药性概述. 农药科学与管理, 2019,40(2):34-41.
HUANG Z F, LIU Q, WANG Y Y, JIANG C L, ZHOU X X. Overview of weed resistance to ALS inhibitors. Pesticide Science and Administration, 2019,40(2):34-41. (in Chinese)
[34] LIU W T, WU C X, GUO W L, DU L, YUAN G H, WANG J X. Resistance mechanisms to an acetolactate synthase (ALS) inhibitor in water starwort (Myosoton aquaticum) populations from China. Weed Science, 2015,63(4):770-780.
doi: 10.1614/WS-D-14-00184.1
[35] MA R, KAUNDUN S S, TRANEL P J, RIGGINS C W, MCGINNESS D L, HAGER A G, HAWKES T, MCINDOE E, RIECHERS D E. Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp. Plant Physiology, 2013,163(1):363-377.
doi: 10.1104/pp.113.223156
[1] XingXiang GAO,Jian LI,Shuai ZHANG,YueLi ZHANG,Feng FANG,Mei LI,LianYang BAI,ShuangYing ZHANG. Spread and Resistance Level of Aegilops tauschii to Mesosulfuron- Methyl in Winter Wheat Field of Shandong Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 969-979.
[2] GAO XingXiang,LI Jian,ZHANG YueLi,LI Mei,FANG Feng. Resistance Level, Mechanism of Alopecurus myosuroides and Control Efficacy in Wheat Field in Shandong Province [J]. Scientia Agricultura Sinica, 2020, 53(17): 3518-3526.
[3] JI WanLi, ZHU HongJu, LU XuQiang, ZHAO ShengJie, HE Nan, GENG LiHua, LIU WenGe. The Mechanism of Resistance to Fusarium oxysporum f. sp. niveum Race 1 in Tetraploid Watermelon [J]. Scientia Agricultura Sinica, 2018, 51(19): 3750-3765.
[4] SHI Yi, NIU KuiJu, MA HuiLing. Transcriptome Analysis of Creeping Bentgrass (Agrostis stolonifera) Infected with Rhizoctonia solani [J]. Scientia Agricultura Sinica, 2017, 50(17): 3323-3336.
[5] ZHAO Man, TIAN Ti-wei, LI Wei-zheng, LUO Mei-hao, GUO Xian-ru, YAN Feng-ming. Comparative Analysis of Rhopalosiphum maidis Feeding Behaviors on Eight Maize Hybrids (Inbreds) [J]. Scientia Agricultura Sinica, 2015, 48(8): 1538-1547.
[6] YANG Cai-Hong, TIAN Xing-Shan, FENG Li, YUE Mao-Feng. Resistance of Eleusine indica Gaertn to Glyphosate [J]. Scientia Agricultura Sinica, 2012, 45(10): 2093-2098.
[7] WEN Ting, LI Peng-Bo, JIANG Shu-Qin, PU Jian-Feng, WANG Yu-Mei, LIU Wen-Xin, HUA Jin-Ping. Study on Cotton Resistance to Verticillium Wilt by Grafting [J]. Scientia Agricultura Sinica, 2011, 44(24): 5130-5136.
[8] REN Hai-ying,FANG Li,RU Shui-jiang,WANG Han-rong. A Preliminary Investigation of a Mutant Melon Plant edr2 on Resistance to Gummy Stem Blight#br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3131-3138 .
[9]

. Mechanism and Inheritance of Resistance to Rice Stripe Disease in the japonica Rice Cultivar Zhendao 88
[J]. Scientia Agricultura Sinica, 2009, 42(1): 103-109 .
[10] Xiang-shun Hu Hui-Yan ZHAO Zu-qing HU Yu-Hong ZHANG Dong-hong LI. EPG Compare of Sitobion avenae (Fab.) Feeding behavior on 3 Wheat Varieties [J]. Scientia Agricultura Sinica, 2008, 41(7): 1989-1994 .
[11] . Effect of Potassium Chloride on Lignin Metabolism and Its Relation to Resistance of Corn to Stalk Rot [J]. Scientia Agricultura Sinica, 2007, 40(12): 2780-2787 .
[12] ,,. Resistance Mechanism to Fulvia fulva of Tomato Transformed with GO Gene [J]. Scientia Agricultura Sinica, 2006, 39(7): 1365-1370 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!