Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (24): 4613-4623.doi: 10.3864/j.issn.0578-1752.2019.24.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Simultaneous Determination of 18 β-agonists in Blood Products for Feeds by Liquid Chromatography Tandem Mass Spectrometry

DeCheng SUO,ShuLin WEI,ZhiMing XIAO,PeiLong WANG,RuiGuo WANG,Yang LI   

  1. Institute of Quality Standards and Testing Technology for Agricultural Product, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2018-01-08 Accepted:2019-09-20 Online:2019-12-16 Published:2020-01-15

Abstract:

【Background】 Blood product for feeds is a kind of unconventional animal-derived feed material. It is made through coagulating the blood of livestock or poultry, cooking at high temperature, pressing out juice, drying and grinding. However, due to the existence of illegal use of β- agonists, the use of blood product from blood containing β-agonists may become a potential source of harm to human health. In order to reduce the safety risk, it is necessary to study the methods of β-agonists in blood product for feeds. The detection methods of β-agonists include enzyme-linked immunosorbent assay (ELISA), high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). At present, most of the methods or standards are aimed at commercial finished feed or animal-derived food, however there is a lack of relevant research on the detection technology of β-agonists in blood product for feeds. 【Objective】 In order to study and monitor the status of β-agonists in blood product for feeds, a method of LC-MS/MS combined with solid phase extraction (SPE) was developed for the determination of 18 β-agonists in blood product for feeds.【Method】2 g (accurate to 0.01 g) blood product sample was weighed in 50 mL centrifugal tube, and then 20 mL ammonium acetate extract (pH=5.2) and 50 mL beta-glucuronidase/arylsulfatase were added accurately. The eddies were mixed evenly hydrolyzed overnight at 37 (>16 hours), then centrifuged for 5 min at 8 000 r/min, the supernatant was transferred to another centrifugal tube, and 0.5 mL 30% perchloric acid solution was added. After vortex mixing for 30 seconds and centrifugation for 5 minutes at 8 000r/min, supernatant was reserved. PCX solid phase extraction column was activated with 3 mL methanol and 3 mL water in turn. The supernatant was load and washed by 3 mL water and 3 mL methanol, then drained, eluted by 3 mL 5% ammonia methanol solution. The eluent was blown to near dry by nitrogen at 50 °C, dissolved by 1.0 mL 0.1% formic acid water + acetonitrile solution (95+5) and filtered through 0.22 μm filter membrane, then detected by Waters TQ liquid chromatography tandem mass spectrometer. The column ACQUITY UPLC BEH C18 (100 mm, 2.1 mm, 1.7 μm) was used as analysis column; acetonitrile and 0.1% formic acid solution were used as mobile phase for gradient elution. The ionization modes of mass spectrometry were electron spray ion source, positive ion detection method and multi reaction monitoring (HRM), the spray voltage was 3.5 kV, the dissolvent temperature was 480 °C, the source temperature was 150 °C, flow rate of the dissolvent gas was 600L·h -1, and flow rate of the cone gas was 5 L·h -1. The dissolvent gas, cone gas and collision gas were all high purity nitrogen gas.【Result】18 β-agonists showed a good linear relationship between 5 and 100 μg·L -1, with correlation coefficients ranging from 0.99 to 0.999. The average recovery of blood powder, plasma protein powder and globulin powder was 65.1%-110% at the levels of 5, 10 and 50 μg·kg -1, and the relative standard deviation below 15%. The coefficient of variation between batches was less than 20%. The detection limit was less than 5 ng·g -1.【Conclusion】The results of recovery, precision and actual samples showed that the method was suitable for monitoring β-agonists in blood products for feed.

Key words: β-agonists, LC-MS/MS, blood products for feeds

Table 1

Mobile phase and reference gradient elution procedures"

时间
Time
(min)
流速
Flow velocity
(mL·min-1)
0.1%甲酸溶液
0.1% formic
acid solution (%)
乙腈
Acetonitrile
(%)
曲线
Curve
0 0.3 95 5 6
1.0 0.3 95 5 6
2.0 0.3 80 20 6
6.0 0.3 70 30 6
7.0 0.3 5 95 6
8.0 0.3 5 95 6
9.1 0.3 95 5 6
10 0.3 95 5 6

Table 2

MRM optimization conditions of β-agonists"

药物名称
Drug
定性离子对
Qualitative ion pair (m/z)
定量离子对
Quantitative ion pair (m/z)
锥孔电压
Cove (V)
碰撞能量
CE (eV)
西马特罗Cimaterol 220.1>202.1 220.1>202.1 16 10
220.1>160.1 16
马布特罗Mabuterol 310.9>237.1 310.9>216.9 26 16
310.9>216.9 25
西布特罗Cimbuterol 234.2>162.0 234.2>162.0 23 16
234.2>216.2 10
溴布特罗Brombuterol 367.0>293.0 367.0>293.0 25 19
367.0>349.0 12
莱克多巴胺Ractopamine 302.2>163.9 302.4>163.9 26 17
302.2>284.4 13
氯丙那林Clorprenaline 213.9>153.9 213.9>153.9 25 17
213.9>196.1 12
特布他林Terbutaline 226.3>152.3 226.3>152.3 25 17
226.3>170.3 12
齐帕特罗Zilpaterol 263.1>245.3 263.1>245.2 24 13
263.1>185.3 24
沙丁胺醇Salbutamol 240.0>148.3 240.3>148.3 22 20
240.0>222.3 10
克仑特罗Clenbuterol 277.0>203.0 277.0>203.0 25 17
277.0>259.0 11
克仑普罗Clenproperol 262.8>244.9 262.8>202.8 19 14
262.8>202.8 16
妥布特罗Tulobuterol 228.0>153.7 228.0>154.0 19 14
228.0>171.7 9
班布特罗Bambuterol 368.0>71.7 368.0>294.0 25 30
368.0>294.0 17
苯乙醇胺A Phenylethanolamine A 345.1>150.0 345.1>150.0 22 30
345.1>327.0 17
福莫特罗Formoterol 345.0>149.0 345.0>149.0 22 30
345.0>327.0 17
利托君Ritodrine 288.2>270.1 288.2>121 20 12
288.2>121 24
克伦塞罗Clencyclohexerol 319.1>202.9 319.1>202.9 22 20
319.1>301.1 13
沙美特罗Salmeterol 416.2>380.3 416.2>398.3 30 `18
416.2>398.3 15

Fig. 1

Result of different extraction methods on 4 agonists in actual blood products"

Table 3

Linear, LOQ,LOD of β-agonists"

药物名称Drug type 线性方程Linear 相关系数R 检出限LOQ 定量限LOD
沙丁胺醇Salbutamol Y=1269.565×X-406.66 0.9978 1.3 5
克仑特罗Clenbuterol Y=3014.721×X-4337.78 0.9953 0.26 1
莱克多巴胺Ractopamine Y=1160.984×X-3517.6 0.9984 1.7 5
苯乙醇胺A Phenylethanolamine A Y=1097.357×X+2264.901 0.9925 0.47 2
溴布特罗Brombuterol Y=1416.301×X-5076.61 0.9948 0.43 2
氯丙那林Clorprenaline Y=3073.42×X-9732.25 0.9944 1.6 5
特布他林Terbutaline Y=253.3226×X+991.6666 0.9997 1.8 5
齐帕特罗Zilpaterol Y=122.7947×X-67.6185 0.9967 1.7 5
马布特罗Mabuterol Y=5759.203×X-20240.1 0.9970 1.3 5
西马特罗Cimaterol Y=1269.431×X-3962.79 0.9932 1.6 5
班布特罗Bambuterol Y=16871.19×X-61885.9 0.9950 0.35 1
妥布特罗Tulobuterol Y=1919.729×X+2687.591 0.9958 1.7 5
克仑普罗Clenproperol Y=2043.752×X-7385.5 0.9971 1.3 5
福莫特罗Formoterol Y=1695.161×X-6568.26 0.9982 0.42 1
西布特罗Cimbuterol Y=1917.388×X-5613.98 0.9936 1.3 5
沙美特罗Salmeterol Y=1223.231×X+2729.52 0.9954 1.8 5
利托君Ritodrine Y=1238.231×X+272.34 0.9954 0.27 1
克伦塞罗Clencyclohexerol Y=1153.31×X+1911.66 0.9994 1.8 5

Table 4

Recovery and precision of blood products"

添加浓度
Added concentration
(μg·kg-1)
药物名称
Drug
血粉Blood meal 血球蛋白粉Haemoglobin 血浆蛋白粉Plasma protein
批内回收率%
±相对标准偏差
Intra recovery ±RSD (%)
批间变异系数
Inter Coefficient of variation
(%)
批内回收率%
±相对标准偏差
Intra recovery ±RSD (%)
批间变异系数
Inter Coefficient of variation
(%)
批内回收率%±相对标准偏差
Intra recovery ±RSD(%)
批间变异系数
Inter Coefficient of variation
(%)
5 沙丁胺醇Salbutamol 82.0±7.8 9.5 85.7±12 14.2 83.0±12 16.6
克仑特罗Clenbuterol 88.2±6.2 13.9 98.5±14.1 14.4 83.0±12.3 18.0
莱克多巴胺Ractopamine 71.0±6.9 9.3 90.7±17.3 8.8 70.7±6.8 7.7
苯乙醇胺A Phenylethanolamine A 70.5±13.4 15.4 102.3±13 13.5 85.2±8.8 8.6
溴布特罗Brombuterol 70.0±13.8 17.4 106.5±12.9 22.6 82.5±8.7 12.2
氯丙那林Clorprenaline 76.9±12.2 13.5 101.2±5.8 16.6 71.2±8.3 14.2
特布他林Terbutaline 76.1±14.0 15.9 111.9±5.7 7.4 79.6±12.1 15.7
齐帕特罗Zilpaterol 80.8±10.1 15.3 94.4±18.8 12.0 83.2±5.8 15.9
马布特罗Mabuterol 71.9±16.3 15.4 95.4±16 12.8 78.3±13.6 15.8
西马特罗Cimaterol 71.7±15.1 16.5 78.1±13.6 14.8 77.3±13 15.9
班布特罗Bambuterol 84.1±10.8 14.6 85.3±8.2 14.0 80.7±13.9 16.7
妥布特罗Tulobuterol 70.4±14.0 16.8 79.2±10.8 14.3 78.6±18.5 19.6
克仑普罗Clenproperol 91.2±13.6 14.7 89.9±14.4 15.6 73.1±11.3 15.4
福莫特罗Formoterol 88.9±10.7 13.7 92.4±9.1 4.3 78.1±10.8 13.9
西布特罗Cimbuterol 79.9±7.6 13.6 82.6±6.5 14.3 88.2±15.5 17.3
沙美特罗Salmeterol 73.4±7.9 10.2 81.1±8.4 8.7 73.2±7.2 8.9
利托君Ritodrine 79.2±9.7 13.3 100.2±11.6 13.4 80.1±6 9.0
克伦塞罗Clencyclohexerol 65.6±2.7 4.1 103.2±13.6 15.9 100.1±6.9 16.1
10 沙丁胺醇Salbutamol 77.0±11.7 13.7 113.3±14.8 2.9 78.6±8.8 11.5
克仑特罗Clenbuterol 78.9±5.8 9.9 91.1±15.7 16.6 85.6±7.8 10.6
莱克多巴胺Ractopamine 76.6±11.5 15.6 90.2±11 17.2 117.8±10.2 12.4
苯乙醇胺A Phenylethanolamine A 86.7±5.0 14.2 91.5±12.5 11.9 81.8±10.6 13.6
溴布特罗Brombuterol 74.6±10.2 15.0 73.7±8.1 12.9 77.8±13.1 12.2
氯丙那林Clorprenaline 82.4±7.0 13.5 70.1±7.3 14.5 83.0±12 13.7
特布他林Terbutaline 73.3±13.8 13.2 79.6±13.5 13.7 25.8±3.1 8.0
齐帕特罗Zilpaterol 70.2±7.7 15.5 102.1±12.2 13.7 72.8±12.5 12.6
马布特罗Mabuterol 76.6±2.3 5.6 107.7±3.3 15.7 73.3±11 12.6
西马特罗Cimaterol 86.6±9.7 12.1 102.3±6.5 14.2 107.8±11.3 17.3
班布特罗Bambuterol 84.0±6.2 12.8 107.9±15.4 14.6 120.8±7.2 12.7
妥布特罗Tulobuterol 90.3±4.3 8.5 81.7±7.5 9.3 87.0±12.8 13.9
克仑普罗Clenproperol 89.2±11.7 13.3 98.4±7.6 13.4 85.2±3.1 3.4
福莫特罗Formoterol 77.3±4.0 9.0 100.0±13.5 17.1 81.8±12.6 12.2
西布特罗Cimbuterol 85.6±8.1 4.8 72.5±14 16.3 70.1±11.2 13.3
沙美特罗Salmeterol 79.9±6.3 11.3 84.4±13.4 6.8 77.6±7.3 10.2
利托君Ritodrine 77.7±9.2 4.4 102.7±9.7 11.6 79.4±13.7 8.6
克伦塞罗Clencyclohexerol 87.5±9.5 10.4 85.6±13.1 9.6 99.2±6.3 14.0
50 沙丁胺醇Salbutamol 97.0±9.6 15.8 110.0±13.5 12.0 78.1±7.8 12.7
克仑特罗Clenbuterol 86.8±4.3 10.4 102.5±17 14.0 74.2±10.6 12.5
莱克多巴胺Ractopamine 97.2±10.2 13.1 102.2±12.2 13.9 79.2±7.7 9.1
苯乙醇胺A Phenylethanolamine A 89.9±4.2 4.6 107.7±3.3 13.6 74.0±6.8 9.0
溴布特罗Brombuterol 93.3±13.5 15.5 88.9±13.1 16.0 88.8±6.2 8.7
氯丙那林Clorprenaline 91.6±5.0 10.7 77.6±8.7 4.5 81.5±8.2 9.2
特布他林Terbutaline 80.4±6.8 15.4 99.0±7 12.4 73.8±5.8 7.1
齐帕特罗Zilpaterol 75.5±8.3 12.1 97.8±6.3 9.3 87.1±6.8 8.5
马布特罗Mabuterol 77.8±5.5 9.5 90.0±12.4 15.0 58.5±12.2 13.2
西马特罗Cimaterol 88.1±4.5 7.6 81.1±12.8 16.1 80.2±5.3 7.0
班布特罗Bambuterol 79.6±5.8 8.7 90.7±8.6 16.1 88.1±6.8 8.9
妥布特罗Tulobuterol 76.6±7.5 10.1 104.7±11.4 12.7 78.6±7.8 8.8
克仑普罗Clenproperol 96.8±4.3 12.2 83.7±32.4 10.6 76.6±8.7 9.2
福莫特罗Formoterol 94.7±4.2 11.9 81.0±15.6 13.1 77.2±8.3 13.1
西布特罗Cimbuterol 87.1±6.6 10.6 71.3±12.4 13.8 76.6±12.5 12.3
沙美特罗Salmeterol 78.9±7.8 11.6 112.1±7.2 11.8 70.7±8.8 14.0
利托君Ritodrine 82.3±5.5 14.4 102.4±7.1 13.3 78.6±12.6 8.4
克伦塞罗Clencyclohexerol 93.3±5.9 11.4 91.7±9.4 9.5 98.2±8.6 9.0

Fig. 2

The typical ion chromatogram of LC-MS/MS analysis for 18 β-agonist. 1: Zilpaterol; 2: Salbutamol; 3: Terbutaline; 4: Cimaterol; 5: Cimbuterol; 6: Ritodrine; 7: Clencyclohexerol; 8: Ractopamine; 9: Clenproperol; 10: Clorprenaline; 11: Formoterol; 12: Tulobuterol; 13: Clenbuterol; 14: Bromobuterol; 15: Bambuterol; 16: Mabuterol; 17: Phenylethanolamine A; 18: Salmeterol"

Fig. 3

Chromatograms of extracted solution with or without perchloric acid"

[1] 李俊锁, 邱月明, 王超 . 兽药残留分析. 上海:上海科技出版社,. 2002, 641-648.
LI J S, QIU Y M, WANG C. Residue Analysis for Veterinary Drug. Shanghai: Shanghai Scientific & Technical Publishers, 2002, 641-644. (in Chinese)
[2] HANRAHAN J P . Beta-Agonists and Their Effects on Animal Growth and Carcass Quality. New York,Elsevier, 1987.
[3] LÓPEZ-CARLOS M A, RAMÍREZ R G, AGUILERA-SOTO J I, ARÉCHIGA C F, MÉNDEZ-LLORENTE F, RODRÍGUEZ H, SILVA J M . Effect of ractopamine hydrochloride and zilpaterol hydrochloride on growth, diet digestibility, intake and carcass characteristics of feedlot lambs. Livestock Science, 2010,31:23-30.
[4] MERSMANN H J .Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. Journal of Animal Science, ,1998 76 : 160-172.
[5] MITCHELL G A, DUNNAVAN G . Illegal use of beta-adrenergic agonists in the United States. Journal of Animal Science, 1998,76(1):208-211.
[6] KUIPER, H A, NOORDAM M Y, DOOREN-FILPSEN M M . Illegal use of beta-adrenergic agonists: European community. Journal of Animal Science, 1998,76:195-207.
[7] GIANFRANCO B, TELEMACO C, FLAVIA F, ROBERTA G, AGOSTINO M, FRANCESCO R, MARCO S, ALBERTO L . Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicology Letter, 2000,114:47-53.
[8] MARTINEZ NAVAARI J E , Food poisoning related to consumption of illicit β-agonist in liver. The Lancet, 1990,336:1311-1315.
[9] Commission decision 1996/23/EC. (1996). Official Journal of European Communication L125, 10.
[10] 中华人民共和国农业部农业部公告第176号. 禁止在饲料和动物饮水中使用的药物品种目录.
Announcement of the Ministry of Agriculture of the People's Republic of China No. 176 Catalogue of Prohibited drugs in feed and animal drinking water.(in Chinese)
[11] 中华人民共和国农业部农业部公告第1519号. 禁止在饲料和动物饮水中使用的物质.
Announcement of the Ministry of Agriculture of the People's Republic of China No.1519.Prohibited Substances in feed and animal drinking water. (in Chinese)
[12] 中华人民共和国农业部公告第1773号 饲料原料目录.
Announcement of the Ministry of Agriculture of the People's Republic of China No. 1773 Catalogue of Feed Raw Materials. (in Chinese)
[13] 朱森阳, 汪国和, 王志鹏 . 畜禽血液资源的开发利用进展. 养殖与饲料, 2007, (1):67-69.
ZHU S Y, WANG G H, WANG Z P . Development and Utilization of Livestock and Poultry Blood Resources, Animals Breeding and Feed, 2007, (1):67-69. (in Chinese)
[14] 汪国和, 张日俊 . 血粉高蛋白饲料的开发和应用. 饲料工业, 2004,25(11):58-60.
WANG G H, ZHANG R J . Development and application of blood meal high protein feed. Feed Industry, 2004,25(11):58-60. (in Chinese)
[15] 王裕玉, 石野, 于世亮, 杨雨虹, 刘大森 . 血粉在水产饲料中应用效果的研究进展. 中国饲料, 2012(23):39-42.
WANG Y Y, SHI Y, YU S L, YANG Y H, LIU D S .Research progress on the application of blood meal in aquatic feed. China Feed. 2012(23):39-42. (in Chinese)
[16] BUCKNALL S D, MACKENZIE A L, SAUER M J . Determination of Clenbuterol in bovine liver by enzyme immunoassay. Analytica Chimica Acta, 1993,275:227-230.
[17] ZHAO Y Y, JIANG D M, WU K, YANG H, DU H J, ZHAO K, LI J H, DENG A P . Development of a sensitive monoclonal antibody- based ELISA for the determination of a β-adrenergic agonist brombuterol in swine meat, liver and feed samples. Analytical Methods, 2016,8:6941-6948.
[18] 杨菲, 王培龙, 石雷, 苏晓鸥 . β-受体激动剂速测技术研究. 农产品质量与安全, 2015,4:41-47.
YANG F, WANG P L, SHI L, SU X O . Study on rapid detection of beta receptor agonists. Quality and Safety of Agro-Products, 2015,4:41-47. (in Chinese)
[19] ESHAQ S, CHAI S C, SAMI J, GENE A, HOFFMAN I K . Determination of ractopamine in animal tissues by liquid chromatography- fluorescence and liquid chromatography/ tandem mass spectrometry. Analytica Chimica Acta, 2003,483 : 137-145.
[20] KOOLE A, BOSMAN J, FRANKE J P . Multiresidue analysis of β-agonists in human and calf urine using multimodal solid-phase extraction and high-performance liquid chromatography with electrochemical detection. Journal of Chromatography B, 1999,726:149-156.
[21] LIU W, ZHANG L, WEI Z Y, CHEN S P, CHEN G N . Analysis of β-agonists and β-blockers in urine using hollow fibre-protected liquid-phase microextraction with in situ derivatization followed by gas chromatography/mass spectrometry. Journal of Chromatography A, 2009,1216:5340-5346.
[22] PASQUALE G, BRAMBILLA G, NERI B . Purification of clenbuterol- like β2-agonist drugs of new generation from bovine urine and hair by α1-acid glycoprotein affinity chromatography and determination by gas chromatography-mass spectrometry. Analytica Chimica Acta, 2007,587:67-74.
[23] DU W, LEI C, ZHANG S, BAI G, ZHOU H Y, SUN M, FU Q, CHANG C .Determination of clenbuterol from pork samples using surface molecularly imprintedpolymers as the selective sorbents for microextraction in packed syringe. Journal of Pharmaceutical and Biomedical Analysis, 91(2014) 160-168.
[24] XU Z G, HU Y F, HU Y L, LI G K . Investigation of ractopamine molecularly imprinted stir bar sorptive extraction and its application for trace analysis of β2-agonists in complex samples. Journal of Chromatography A, 2010 , 1217:3612-3618.
[25] 李阳, 苏晓鸥, 张维, 樊霞, 王培龙, 王瑞国, 王骁 . 酶解及有机溶剂提取对绵羊血浆和尿样中两种β2- 受体激动剂含量测定的影响. 分析化学, 2014(5):717-722.
LI Y, SU X O, ZHANG W, FAN X, WANG P L, WANG R G, WANG X .Study on influences of enzymolysis and organic solvent extraction on determination of 2 kinds of β2-agonist residues in sheep plasma and urine. Chinese Journal of Analytical Chemistry, 2014(5):717-722. (in Chinese)
[26] MAURO D, CIARDULLO S, CIVITAREALE C, FIORI M, PASTORELLI A A, STACCHINI P, PALLESCHI G . Development and validation of a multi-residue method for determination of 18 β-agonists in bovine urine by UPLC-MS/MS. Microchemical Journal, 2014,115:70-77.
[27] WANG P L, LIU X M, SU X O, ZHU R H . Sensitive detection of b-agonists in pork tissue with novel molecularly imprinted polymer extraction followed liquid chromatography coupled tandem mass spectrometry detection. Food Chemistry, 2015,184:72-79.
[28] GB/T22286-2008. 动物源性食品中多种β-受体激动剂残留量的测定液相色谱串联质谱法
GB/T22286-2008 Determination of a number of beta agonists residues in animal derived foods by liquid chromatography tandem mass spectrometry.(in Chinese)
[29] 强致懿 . 猪肝脏、肌肉、尿液和血清中莱克多巴胺残留检测方法及残留消除的研究[D]. 北京: 中国农业大学, 2007.
QING Z Y . Determination of ractopamine residue in pig liver, muscle, urine and serum and study on residue elimination. Beijing: China Agricultural University, 2007. ( in Chinese
[30] SUO D C, ZHAO G L, WANG R G, SU X O . Determination of ractopamine in animal hair: Application to residue depletion in sheep and residue monitoring. Journal of Chromatography B, 2014,972:124-128.
[1] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[2] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[3] XU Ying,YAN ChangYan,YANG WeiCong,ZHANG YunXiao,YU Yang,HUANG XianHui. Pharmacokinetics of Chlortetracycline Microspheres in Pigs [J]. Scientia Agricultura Sinica, 2020, 53(19): 4083-4091.
[4] XU Ying, YAN Guo-quan, ZHANG Yang, YU Hong-xiu. Differential Proteomic Research of Three Varieties of Tobacco in China [J]. Scientia Agricultura Sinica, 2016, 49(16): 3084-3097.
[5] YAO Ting-1, QIN Yu-Chang-2, WU Ning-Peng-3, PENG Li-3, SUN Dan-Dan-1, GU Xu-1. Analysis of Antibiotic Residues Detection in Corn DDGS [J]. Scientia Agricultura Sinica, 2014, 47(5): 995-1005.
[6] JIN Fen, WANG Jing, WEI Shan-shan, DU Xin-wei, SHAO Hua, JIN Mao-jun, WANG Shan-shan, SHE Yong-xin. Degradation Dynamics and Residues Analysis of Abamectin in Cucumber and Soil [J]. Scientia Agricultura Sinica, 2014, 47(18): 3684-3690.
[7] XIAO Hong-Li, GUI Yue-Jing, QI Wei-Yan, CHEN Jie-Yin, LI Lei, XU Ming, DAI Xiao-Feng. Comparison of Secretome Extraction Methods in Verticillium dahliae [J]. Scientia Agricultura Sinica, 2014, 47(12): 2348-2356.
[8] LI Shuai-Peng, HUANG Xian-Hui, YANG Gang, GUO Chun-Na. Determination of Clavulanic Acid Residue in Edible Tissues of Animals by High Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Scientia Agricultura Sinica, 2013, 46(23): 5012-5019.
[9] CHEN Xiao-Jun, WANG Meng, FAN Shu-Qin, CUI Hai-Rong, YANG Yi-Zhong. Degradation Dynamics and Residues Analysis of Chlorantraniliprole in Cabbage and Soil by QuEChERS-High Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Scientia Agricultura Sinica, 2012, 45(13): 2636-2647.
[10] . Separation and Analysis of Wheat Leaf Proteome by Combination of 2D-LC and Nano LC-MS/MS
[J]. Scientia Agricultura Sinica, 2009, 42(3): 772-780 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!