Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (13): 2508-2518.doi: 10.3864/j.issn.0578-1752.2017.13.010

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Brassinolide on Photosynthesis, Chlorophyll Fluorescence Characteristics and Carbohydrates Metabolism in Leaves of Foxtail Millet (Setaria italica) Under Sigma Broad Stress

YANG HuiJie1, YUAN XiangYang1, GUO PingYi1, DONG ShuQi1, ZHANG LiGuang2Wen YinYuan1, Song XiE1, Wang HongFu1   

  1. 1College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi; 2Institute of Crop Sciences, Shanxi Academy of Agricultural Sciences, Taiyuan 030031
  • Received:2017-01-17 Online:2017-07-01 Published:2017-07-01

Abstract: 【Objective】 The effects of brassinolide (BR) on photosynthesis, chlorophyll fluorescence characteristics and carbohydrates metabolism of foxtail millet (Setaria italica) under Sigma Broad stress wereexplored to provide some theoretical bases and technological approaches for security application of sulfonylurea herbicide and the alleviation of herbicide phytotoxicity in foxtail millet field. 【Method】Completely randomized design and repeated 3 times, using high-yielding hybrid Zhangza 5 and Jigu 21 with general high quality as materials, through pot experiments, applicating 7.5 mg·L-1 of Sigma Broad at three-leaf to five-leaf stage, and after 1 d foliar spraying water (CK), 0.05, 0.1, 0.2 and 0.4 mg·L-1of BR. the effect of BR on growth parameters (plant height, leaf area, fresh mass), photosynthetic pigment content (Chla, Chlb, Car, Chl (a+b)), gas exchange parameters, chlorophyll fluorescence parameters, sugar content, activities of key enzyme of sucrose metabolism were determined and analyzed to reveal the effects of BR on modulation of photosynthetic capacity and carbohydrates metabolism by Sigma Broad of foxtail millet after 7 d.【Result】 Sigma Broad significantly decreased plant height, leaf area, fresh mass, photosynthetic pigment content, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), the maximum photochemical yield (Fv/Fm), apparent photosynthetic electron transport rate (ETR), quantum yield dissipated by non-regulatory energy (Y(NO)), activity of neutral invertase (NI), sucrose synthetase (SS) and sucrose phosphate synthase (SPS), but significantly increased intercellular CO2 concentration (Ci), and the quantum yield dissipated by regulatory energy (Y (NPQ), reducing sugar, sucrose and starch content. One day after Sigma Broad treatment, spraying BR dramatically increased plant height, leaf area, fresh mass, photosynthetic pigment content, Pn, Tr, Gs, Fv/Fm, ETR, Y (NO), NI, SS and SPS of foxtail millet, but decreased Ci, Y (NPQ), reducing sugar, sucrose and starch content. BR at 0.05-0.1 mg·L-1 had a better effect on relieving the Sigma Broad of Zhangza 5, BR at 0.1-0.2 mg·L-1 had a better effect on relieving the Sigma Broad of Jingu 21. BR at ≥0.4 mg·L-1 did not alleviate the phytotoxicity of Sigma Broad.【Conclusion】Results showed that one of the reasons that 7.5 mg·L-1 of Sigma Broad made obvious damage to foxtail millet is that the photosynthetic pigment content was reduced, and photosynthetic pathways and sucrose metabolism were hindered, the PSⅡ photochemical activity was inhibited, and the normal operation of sucrose metabolism was affected. treatment with BR at 0.1 mg·L-1 could alleviate the inhibition of photosynthesis of Sigma Broad in foxtail millet through improving the photosynthetic pigment content, increasing the stomatal conductance, raising PSⅡ photochemical activity, promoting the discharge of carbohydrates and maintaining balance of sucrose metabolism.

Key words: foxtail millet (Setaria italica), brassinolide, Sigma Broad, photosynthetic capacity;chlorophyll fluorescence characteristics, carbohydrates metabolism

[1]    高贞攀, 郭平毅, 原向阳, 董淑琦, 刘阳, 高虹, 宁娜, 郭美俊, 解丽丽, 冯雷, 王斌强, 余凯凯. 苯磺隆和单嘧磺隆对张杂谷10号光合特性及产量构成的影响. 中国农业大学学报, 2015, 20(6): 36-45.
GAO Z P, GUO P Y, YUAN X Y, DONG S Q, LIU Y, GAO H, NING N, GUO M J, XIE L L, FENG L, WANG B Q, YU K K. Effects of tribenuron-methyl and monosulfuron application on photosynthetic characteristics and yield of Zhangzagu 10. Journal of China Agricultural University, 2015, 20(6): 36-45. (in Chinese)
[2]    李萍, 杨小环, 王宏富, 赵志国, 郝兴宇. 不同谷子(Setariaitalica (L.) Beauv)品种对除草剂的耐药性. 生态学报, 2009, 29(2): 860-868.
LI P, YANG X H, WANG H F, ZHAO Z G, HAO X Y. The tolerance of different millet (Setariaitalica (L.) Beauv) cultivars to herbicides. Acta Ecologica Sinca, 2009, 29(2): 860-868. (in Chinese)
[3]    周汉章, 侯升林, 宋银芳, 赵宇, 董立, 贾海燕, 吕芃, 王新玉, 刘恩魁, 薄奎勇. 谷田单子叶杂草对谷子产量损失的影响. 中国农学通报, 2013, 29(12): 179-184.
ZHOU H Z, HOU S L, SONG Y F, ZHAO Y, DONG L, JIA H Y, Lü P, WANG X Y, LIU E K, BO K Y. Impact of monocotyledon weed on millet yield lossin foxtail millet field. Chinese Agricultural Science Bulletin, 2013, 29(12): 179-184. (in Chinese)
[4]    周汉章, 任中秋, 刘环, 杨万桥, 寇俊杰. 谷田杂草化学防除面临的问题及发展趋势. 河北农业科学, 2010, 14(11): 56-58.
ZHOU H Z, REN Z Q, LIU H, YANG W Q, KOU J J. Problem and development trend of chemical weeding in millet field. Journal of Hebei Agricultural Sciences, 2010, 14 (11): 56-58. (in Chinese)
[5]    邓金保. 磺酰脲类除草剂综述. 世界农药, 2003, 25(3): 24-29, 32.
DENG J B. The sulfonylurea herbicide. World pesticides, 2003, 25(3): 24-29, 32. (in Chinese)
[6]    张琳. 油菜素内酯的生理效应及发展前景. 北方园艺, 2011(20): 188-191.
ZHANG L. Physiological effects and development prospects of brassinosteroids. Northern horticulture, 2011(20): 188-191. (in Chinese)
[7]    YUAN L Y, SHU S, SUN J, GUO S R, Takafumi T. Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. Photosynthesis Research, 2012, 112(3): 205-214.
[8]    冷佳奕, 叶庆生, 李玲. 植物体中油菜素内酯的信号转导. 植物生理学通讯, 2002, 38(1): 67-71.
LENG J Y, YE Q S, LI L. Brassinosteriods signal transduction in plant. Plant physiology communications, 2002, 38(1): 67-71. (in Chinese)
[9]    罗杰, 陈季楚. 油菜素内酯的生理和分子生物学研究进展. 植物生理学报, 1998, 34(2): 81-87.
LUO J, CHEN J C. The physiological and molecular biological advances of brassinosteroids. Plant physiology communications, 1998, 34(2): 81-87. (in Chinese)
[10]   邓天福, 吴艳兵, 李广领, 王建华. 油菜素内酯提高植物抗逆性研究进展. 广东农业科学, 2009(11): 21-25.
DENG T F, WU Y B, LI G L, WANG J H. Reviews for plant stress-resistance promoting related to brassinolides. Guangdong Agricultural Sciences, 2009(11): 21-25. (in Chinese)
[11]   Dhriti K, Amandeep R, Vandana G, Nitika K, Renu B. 24-Epibrassinolide mediated changes in photosynthetic pigments and antioxidative defence system of radish seedlings under cadmium and mercury stress. Journal of Stress Physiology and Biochemistry, 2014, 10(3): 110-121.
[12]   闫慧萍, 彭云玲, 赵小强, 吕玉燕. 外源24-表油菜素内酯对逆境胁迫下玉米种子萌发和幼苗生长的影响. 核农学报, 2016, 30(5): 988-996.
YAN H P, PENG Y L, ZHAO X Q, Lü Y Y. Effect of exogenous 24-epibrassinolide on seed germination and seedling growth of maize under different stress. Journal of nuclear agricultural sciences, 2016, 30(5): 988-996. (in Chinese)
[13]   尚庆茂, 宋士清, 张志刚, 郭世荣. 外源BR诱导黄瓜(Cucumis sativus L.)幼苗的抗盐性. 中国农业科学, 2006, 39(9): 1872-1877.
SHANG Q M, SONG S Q, ZHANG Z G, GUO S R. Exogenous brassinosteroid induced the salt resistance of cucumber (Cucumis sativus L.) seedlings. Scientia agricultura sinica, 2006, 39(9): 1872-1877. (in Chinese)
[14]   SOARES C, SOUSA A D, PINTO A, AZENHA M, TEIXEIRA J, AZEVEDO R A, FIDALGO F. Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environmental and Experimental Botany, 2016, 122: 115-125.
[15]   王忠娣, 王太泉, 王维江, 冯文涛. 甲基二磺隆等药剂混用春季防治麦田恶性杂草安全性试验研究. 陕西农业科学, 2011(2): 49, 192.
WANG Z D, WANG T Q, WANG W J, FENG W T. The safety study of mesosulfuron-methyl controll the malignant weeds in spring wheat field. Journal of Shaanxi Agricultural Sciences, 2011(2): 49,192. (in Chinese)
[16]   黄蕾, 钟妍婷, 余凯凯, 刘阳, 宋惠洁, 原向阳. 阔世玛对谷子幼苗农艺性状和生理指标的影响. 山西农业大学学报 (自然科学版), 2015, 35(6): 603-607.
HUANG L, ZHONG Y T, YU K K, LIU Y, SONG H J, YUAN X Y. Effects of Sigma Broad on the agronomic characteristics and physiological indices of foxtail millet seedlings. Journal of Shanxi Agricultural University (Natural Science Edition), 2015, 35(6): 603-607. (in Chinese)
[17]   钟妍婷, 原向阳, 刘哲, 徐佳燕, 温芳英, 张美涛, 黄蕾, 温银元, 董淑琦, 张丽光, 郭平毅. 油菜素内酯处理对谷子农艺性状和生理特性的影响. 作物杂志, 2015(2): 124-128.
ZHONG Y T, YUAN X Y, LIU Z, XU J Y, WEN F Y, ZHANG M T, HUANG L, WEN Y Y, DONG S Q, ZHANG L G, GUO P Y. Effect of brassinolide on agronomic and physiological properties of foxtail millet. Crops, 2015(2): 124-128. (in Chinese)
[18]   乔琳, 李杰, 胡春红, 乔传英. 外施表油菜素内酯缓解玉米幼苗铅毒害机制研究. 核农学报, 2014, 28(11): 2126-2131.
QIAO L, LI J, HU C H, QIAO C Y. The study on the mechanism of external epibrassinolide relieving lead toxicity on maize seedlings. Journal of Nuclear Agricultural Sciences, 2014, 28(11): 2126-2131. (in Chinese)
[19]   周小毛, 柏连阳, 黄柯程, 卜小莉. 天然芸苔素内酯减轻胺苯磺隆对水稻药害的作用. 杂草科学, 2003(1): 26-27.
ZHOU X M, BAI L Y, HUANG K C, BU X L. The effects of natural brassinolide alleviates the injury of ethametsulfuron in rice. Weed Science, 2003(1): 26-27. (in Chinese)
[20]   沐兴武, 陈建国, 李良. 芸苔素内酯解除甲黄隆对水稻药害的研究. 农药, 2002, 41(11): 36-38.
MU X W, CHEN J G, LI L. The effects of brassinolide alleviates the injury of metsulfuron in rice. Pesticides, 2002, 41(11): 36-38. (in Chinese)
[21]   黄允才, 张格成, 胡光华. 天然芸苔素缓解除草剂药害的作用. 农药, 2000, 39(6): 40-42.
HUANG Y C, ZHANG G C, HU G H. The effects of natural brassinolide alleviates the injury of herbicide. Pesticides, 2000, 39(6): 40-42. (in Chinese)
[22]   杨艳君, 赵红梅, 王慧阳, 曹玉风. 外源油菜素内酯对谷子2,4-D胁迫的缓解效应. 山西农业科学, 2015, 43(9): 1165-1168.
YANG Y J, ZHAO H M, WANG H Y, CAO Y F. Exogenous EBR on alleviating 2,4-D stress in foxtail millet seedlings. Journal of Shanxi Agricultural Sciences, 2015, 43(9): 1165-1168. (in Chinese)
[23]   邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000.
ZOU Q. Plant physiology experiment instruction. Beijing: China agriculture press, 2000. (in Chinese)
[24]   梁建生, 曹先祖, 徐生, 朱庆森, 宋平. 水稻籽粒库强度与淀粉累积之间关系的研究. 作物学报, 1994, 20(6): 685-691.
LIANG J S, CAO X Z, XU S, ZHU Q S, SONG P. Studies on the relationship between the grain sink strength and it’s starch accumulation in rice (O. sativa). Acta Agronomica Sinica, 1994, 20(6): 685-691. (in Chinese)
[25]   YUAN X Y, GUO P, QI X, NA N, WANG H, WANG H F, WANG X, YANG Y J. Safety of herbicide Sigma Broad on Radix Isatidis (Isatis indigotica, Fort.) seedlings and their photosynthetic physiological responses. Pesticide Biochemistry and Physiology, 2013, 106(1/2): 45-50.
[26]   原向阳, 郭平毅, 黄洁, 张丽光, 郭俊, 解丽丽, 聂萌恩, 王玉国, 王宏富. 缺磷胁迫下草甘膦对抗草甘膦大豆幼苗光合作用和叶绿素荧光参数的影响. 植物营养与肥料学报, 2014, 20(1): 221-228.
YUAN X Y, GUO P Y, HUANG J, ZHANG L G, GUO J, XIE L L, NIE M E, WANG Y G, WANG H F. Effect of glyphosate on photosynthesis and chlorophyll fluorescence of leaves of glyphosate- resistant soybean [Glycine max (L.) Merr] seedlings under phosphorus deficiency stress. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 221-228. (in Chinese)
[27]   刘阳, 郭平毅, 原向阳, 高贞攀, 王斌强, 宋惠洁, 黄蕾, 余凯凯. 叶面喷施骠马对张杂谷10号光合特性及产量构成的影响. 山西农业大学学报(自然科学版), 2015, 35(6): 608-613.
LIU Y, GUO P Y, YUAN X Y, GAO Z P, WANG B Q, SONG H J, HUANG L, YU K K. Effect of foliar application of fenoxaprop-p-ethy on photosynthetic characteristics and yield of Zhangza10. Journal of Shanxi Agricultural University (Natural Science Edition), 2015, 35(6): 608-613. (in Chinese)
[28]   FARIDUDDIN Q, KHALIL R R, MIR B A, YUSUF M, AHMAD A. 24-Epibrassinolide regulates photosynthesis, antioxidantenzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environmental Monitoring & Assessment, 2013, 185(9): 7845-7856.
[29]   张守仁. 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 1999, 16(4): 444-448.
ZHANG S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chinese bulletin of botany, 1999, 16(4): 444-448. (in Chinese)
[30]   HAIRAT S, KHURANA P. Improving photosynthetic responses during recovery from heat treatments with brassinosteroid and calcium chloride in Indian bread wheat cultivars. American Journal of Plant Sciences, 2001, 6(11): 1827-1849.
[31]   KEUGTEN A J, PAWELZIK E. Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environmental and Experimental Botany, 2009, 65(2/3): 170-176.
[32]   SHEN C H, KRISHNAMURTHY R, YEH K W. Decreased L-ascorbate content mediating bolting is mainly regulated by the galacturonate pathway in Oncidium. Plant & Cell Physiology, 2009, 50(5): 935-946.
[33]   GIBSON S I. Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiology, 2000, 124(4): 1532-1539.
[34]   DE SOUSA C A F, SODEK L. Alanine metabolism and alanine aminotransferase activity in soybean (Glycine max) during hypoxia of the root system and subsequent return to normoxia. Environmental and Experimental Botany, 2003, 50(1): 1-8.
[35]   寇江涛. 24-表油菜素内酯诱导下紫花苜蓿耐盐性生理响应研究[D]. 兰州: 甘肃农业大学, 2016.
KOU J T. Physiological mechanism of 24-epibrassinolide-regulated salt stress tolerance in medicago sativa[D]. Lanzhou: Gansu Agricultural University, 2016. (in Chinese)
[36]   YUAN L Y, ZHU S D, LI S H, SHU S, SUN J, GUO S R. 24-Epibrassinolide regulates carbohydrate metabolism and increases polyamine content in cucumber exposed to Ca(NO3)2 stress. Acta Physiologiae Plantarum, 2014, 36(11): 2845-2852.
[37]   KHELIL A, MENU T, RICARD B. Adaptive response to salt involving carbohydrate metabolism in leaves of a salt-sensitive tomato cultivar. Plant Physiology and Biochemistry, 2007, 45(8): 551-559.
[1] WU Yang, GAO HuiChun, ZHANG BiXian, ZHANG HaiLing, WANG QuanWei, LIU XinLei, LUAN XiaoYan, MA YanSong. Effects of 24-Brassinolide on the Fertility, Physiological Characteristics and Cell Ultra-Structure of Soybean Under Saline-Alkali Stress [J]. Scientia Agricultura Sinica, 2017, 50(5): 811-821.
[2] LIU Qing, LUAN Xue-tao, XU Shi-yan,MENG Ying, GAO Jiang-man, XI Zhu-mei. Effect of 24-epibrassinolide Treatment on Grapevine Leaf Against Plasmopara viticola [J]. Scientia Agricultura Sinica, 2016, 49(15): 3010-3018.
[3]
KANG Yun-yan ; YANG Xian ; GUO Shi-rong ; ZHANG Ying-ying
. Effects of 24-Epibrassinolide on Carbohydrate Metabolism and Enhancement of Tolerance to Root-Zone Hypoxia in Cucumber (Cucumis sativus L.) [J]. Scientia Agricultura Sinica, 2011, 44(12): 2495-2503 .
[4] . Effects of 24-Epibrassinolide on Antioxidant System in Cucumber Seedlings Roots under Hypoxia Stress [J]. Scientia Agricultura Sinica, 2008, 41(1): 153-161 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!