Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (10): 2008-2016.doi: 10.3864/j.issn.0578-1752.2016.10.016

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Signal Pathway of Interferon-β Induced by Porcine Circovirus Type 2 in PK-15 Cells

ZHANG Xin-chen, ZHAO Qi-ling, CHEN Meng-meng, SUN Jia-rui, BAO En-dong, ZHANG Shu-xia, LÜ Ying-jun   

  1. College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095
  • Received:2015-10-08 Online:2016-05-16 Published:2016-05-16

Abstract: 【Objective】 The objective of this study is to investigate the mechanism of IFN-β production induced by PCV2 in PK-15 cells and provide a theoretical foundation for the pathogenesis and prevention of porcine circovirus disease.【Method】 The PK-15 cells were divided into five groups randomly: Control group, PCV2 group, BX795 (inhibitor of TBK1/IKKε) group, and BAY11-7082 (inhibitor of NF-κB) group, BX795+BAY 11-7082(mixed inhibitors) group. BX795 group, BAY 11-7082 group and BX795+BAY 11-7082 group were pretreated with 0.5µmol BX795, 5µmol BAY 11-7082 and 0.5µmol BX795+5µmol BAY 11-7082 for one hour, respectively. Then the PK-15 cells were infected with PCV2 for 1 h except the control group. The cells were collected at 3, 12, 24, 48 and 72h after infection. The RNA was extracted from the five groups and then reverse-transcribed into cDNA. The mRNA levels of IFN-β, pattern recognition receptors (TLR3, TLR9, RIG-1, MDA-5 and DAI) and adaptor proteins (TRIF, MyD88, Sting, MAVS and IRF3) were detected by real time PCR.【Result】The mRNA levels of IFN-β in PCV2-infected groups were significantly higher than the control at 48h and 72h (P<0.01), indicating that IFN-β can be induced by PCV2 in PK-15 cells. The mRNA levels of TLR9 in PCV2-infected groups were higher than the control at 48h and 72h (P<0.01), the mRNA levels of TLR3 increased obviously at 48h (P<0.01), and the mRNA levels of TRIF and MyD88 which were adaptor proteins of TLR9 and TLR3 were also up-regulated at 48h (P<0.01), demonstrating that NF-κB signal pathway mediated by TLRs is activated by PCV2. The mRNA levels of MDA-5 and RIG-1 were significantly higher than the control at 72h (P<0.01), the expression levels of IRF3, MAVS, Sting which were adaptor proteins of RIG-1 and MDA-5 significantly increased at 48h (P<0.01), indicating that IRF3 signal pathway mediated by RLRs is activated by PCV2. The mRNA levels of DAI were higher at 48h and 72h (P<0.01), also indicating that DNA recognition receptor is involved in the production of IFN-β. BX795 and BAY 11-7082 inhibitors were used to inhibit the signal pathway mediated by IRF3 and NF-κB, the result showed that the mRNA levels of IFN-β in BX795-treated group was obviously lower than the control group (P<0.01), while no significant difference was found between BAY 11-7028-treated group and the control group, demonstrating that the up-regulation of IFN-β induced by PCV2 is mainly relative to the IRF3 signal pathway. 【Conclusion】The PCV2 could induce production of IFN-β in PK-15 cells and IRF3 signal pathway played an important role during this process.

Key words: PCV2, PK-15 cell, IFN-β, signal pathway, adaptor proteins

[1]    HAMEL A L, LIN L L, NAYAR G P. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. Journal of Virology, 1998, 72(6): 5262-5267.
[2]    DARWICH L, SEGALES J, MATEU E. Pathogenesis of postweaning multisystemic wasting syndrome caused by porcine circovirus 2: an immune riddle. Archives of Virology, 2004, 149(5): 857-874.
[3]    孙运, 华立忠, 陈耿, 张书霞. PCV2感染仔猪急性期蛋白的变化. 中国农业科学, 2010, 43(19):4116 – 4122.
SUN Y, HUA L Z, CHEN G, ZHANG S X. Changes of acute phase proteins profile in PCV2 experimentally infected piglets. Scientia Agricultura Sinica, 2010, 43(19):4116-4122. (in Chinese)
[4]    范培虎, 危艳武, 郭龙军, 吴洪丽, 黄立平, 刘长明. 高致病性PRRSV与PCV2共感染协同致病性研究.中国农业科学, 2012, 45(18):3859- 3872.
FAN P H, WEI Y W, GUO L J, WU H L, HUANG L P, LIU C M. Studies on synergetic pathogenicity of Co-infection with highly pathogenic PRRSV and PCV2. Scientia Agricultura Sinica, 2012, 45(18): 3859-3872. (in Chinese)
[5]    MANKERTZ A. Molecular interactions of porcine circoviruses type1 and type2 with its host. Virus Research, 2012, 164(1-2):54-60.
[6]    MEERTS P, VAN GUCHT, COX E, VANDEBOSCH A, NAUWYNCK H J. Correlation between type of adaptive immune response against porcine circovirus type2 and level of virus replication. Viral Immunology, 2005, 18(2):333-341.
[7]    SAHA S K, PIETRAS E M, HE J Q, KANG J R, LIU S Y, OGANESYAN G, SHAHANGIAN A, ZARNEGAR B, SHIBA T L, WANG Y, CHENG G. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. European Molecular Biology Organization, 2006, 25(14):3257- 3263.
[8]    IVASHKIV L B, DONLIN L T. Regulation of type I interferon responses. Nature Reviews Immunology, 2014, 14(1):36-49.
[9]    MEERTS P, MISINZO G, NAUWYNCK H J. Enhancement of porcine circovirus2 replication in porcine cell lines by IFN-gamma before and after treatment and by IFN-alpha after treatment. Interferon & Cytokine Research, 2005, 25(11):684-693.
[10]   MISINZO G, DELPUTTE P L, LEFEBVRE D J, NAUWYNCK H J. Increased yield of porcine circovirus2 by a combined treatment of PK-15 cells with interferon gamma and inhibitors of endosomal- lysosomal system acidification. Archives of Virology, 2008, 153(2): 337-342.
[11]   RAMAMOORTHY S, HUANG F F, HUANG Y W, MENG X J. Interferon-mediated enhancement of in vitro replication of porcine circovirus type 2 is influenced by an interferon-stimulated response element in the PCV2 genome . Virus Research, 2009, 145(2):236-243.
[12]   GU J, ZHANG Y ,LIAN X , SUN H, WANG J, LIU W, MENG G, LI P, ZHU D, JIN Y, CAO R. Functional analysis of the interferon- stimulated response element of porcine circovirus type 2 and its role during viral replication in vitro and in vivo. Journal of Virology, 2012(9):152.
[13]   SUN L, LIU S, CHEN Z J. Snapshot: Pathways of Antiviral innate immunity. Cell, 2010, 140(3):436-436.e2.
[14]   ZITVOGEL L, GALLUZZI L, KEPP O, SMYTH M J, KROEMER G. Type I interferons in anticancer immunity. Nature Reviews Immunology, 2015, 15(7): 405-414.
[15]   刘晓艳, 盛徳乔. Toll受体调控适应性免疫应答的研究进展. 细胞与分子免疫学杂志, 2015, 31(8): 1137-1140.
LIU X Y, SHENG D Q. The progress of TLRs regulating adaptive immune response research. Chinese Journal of Cellular and Molecular Immunology, 2015, 31(8): 1137-1140. (in Chinese)
[16]   LUND J, SATO A, AKIRA S, MEDZHITOV R, IWASAKI A. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. Journal of Experimental Medicine, 2003, 1989(3): 513-520.
[17]   CHIU Y H, MACMILLAN J B, CHEN Z J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell, 2009, 138(3): 576-591.
[18]   KRIEG A M, WU T, WEERATNA R, EFLER S M, LOVE-HOMAN L, YANG L, YI AK, SHORT D, DAVIS H L . Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proceeding of the National Academy of Sciences, 1998, 95(21): 12631-12636.
[19]   ABLASSER A, BAUERNFEIND F, HARTMANN G, LATZ E, FITZGERALD K A, HORNUNG V. RIG-I-dependent sensing of poly (dA: dT) through the induction of an RNA polymeraseⅢ-transcribed RNA intermediate. Nature Immunology, 2009, 10(10): 1065-1072.
[20]   HISCOTT J. Convergence of the NF-κB and IRF pathways in the regulation of the innate antiviral response. Cytokine & Growth Factor Reviews, 2007, 18(5-6):483-490.
[21]   FITZGERALD K A, MCWHIRTER S M, FAIA K L, ROWE D C, LATZ E, GOLENBOCK D T, LIAO S M, MANIATIS T. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunology, 2003, 4(5):491-496.
[22]   TAKAOKA A, WANG Z, CHOI M K, YANAI H, NEGISHI H, BAN T, LU Y, MIYAGISHI M, KODAMA T, HONDA K, OHBA Y, TANIGUCHI T. DAI(DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature, 2007, 448(7152): 501-505.
[23]   CLARK, PLATER L, PEGGIE M, COHEN P. Use of the pharmacological inhibitor BX795 to study the Regulation and Physiological Roles of TBK1 and IκB Kinase. Biological Chemistry, 2009, 284(21): 14136-14146.
[24]   CHEN X, REN F, HESKETH J, SHI X, LI J, GAN F, HUANG K. Reactive oxygen species regulate the replication of porcine circovirus type 2 via NF-κB pathway. Journal of Virology, 2012, 426(1):66-72.
[25]   DUAN D N, ZHANG S X, LI X L, GUO H, CHEN M M, ZHANG Y, HAN J, LV Y. Activation of the TLR/MyD88/NF-κB signal pathway contributes to changes in IL-4 and IL-12 production in piglet lymphocytes infected with porcine circovirus type 2 in vitro. PLoS One, 2014, 9(5):e97653.
[1] JiaQi WANG,YuHong DONG,JuLing JIANG,JianNing QIAN,WenTao WEI,GuoLiang SONG,JinBo JIAO,XinXin GUAN,GuoBiao JI,YeXin ZHANG. Based on PK15 Cell Line for PCV2 Fully Suspension Culture Process [J]. Scientia Agricultura Sinica, 2021, 54(6): 1280-1287.
[2] WANG Hai-Yang, ZHENG Yue, LI Hui-Xia, HAN Zhao-Yu, WANG Gen-Lin. Profiling of Differential Expressed MicroRNA in Intramuscular Fat and Subcutaneous Fat of Simmental and Bioinformatic Analyses of miR-27b Target Gene [J]. Scientia Agricultura Sinica, 2013, 46(18): 3894-3900.
[3] CHEN Yang, HUANG Zheng-Yang, ZHANG Yang, LI Xin-Yu, ZHEN Ting, WU Ning-Zhao, XU Qi, CHEN Guo-Hong. Molecular Cloning and Preliminary Functional Analysis of Domains of Duck Retinoic Acid Inducible Gene I [J]. Scientia Agricultura Sinica, 2013, 46(10): 2094-2102.
[4] LIAO Fang-Fang, YUAN Si-Chun, ZHANG Zhong-Wen, WU Guo-Juan. Constructions of Arkadia and UCH37 Expression Vectors and Effects on TGF-β1/Smad7 Signal Pathway [J]. Scientia Agricultura Sinica, 2012, 45(9): 1848-1856.
[5] GUO Long-Jun, LU Yue-Hua, HUANG Li-Ping, WEI Yan-Wu, LIU Chang-Ming. Construction of Infectious Clone for Different Genotype Strains of Porcine Circovirus Type 2 and Characterization of the Rescued Viruses in vitro [J]. Scientia Agricultura Sinica, 2011, 44(23): 4918-4925.
[6] FENG Shao-Zhen, LI Jiao, WU Xiao-Chan, CAO Wei-Sheng, LIAO Ming. The Function of PI3K/Akt Signal Pathway During ALV-J Infection in DF-1 Cells [J]. Scientia Agricultura Sinica, 2011, 44(16): 3446-3453.
[7] SUN Yun,HUA Li-zhong,CHEN Geng,ZHANG Shu-xia
.

Changes of Acute Phase Proteins Profile in PCV2 Experimentally Infected Piglets

[J]. Scientia Agricultura Sinica, 2010, 43(19): 4116-4122 .
[8] MA Yuan-yuan,ZHANG Zhong-wen,LI Hua-wei,SUN Jian-hua,XU Cheng-yang,WU Guo-juan
. Effects of Forsythoside A on the Expression of IFN-α and Mx1
[J]. Scientia Agricultura Sinica, 2010, 43(15): 3237-3243 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!