Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (17): 3415-3428.doi: 10.3864/j.issn.0578-1752.2015.17.009

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Advances in Research of Digital Plant: 3D Digitization of Plant Morphological Structure

ZHAO Chun-jiang, LU Sheng-lian, GUO Xin-yu, DU Jian-jun, WEN Wei-liang, MIAO Teng   

  1. Beijing Research Center for Information Technology in Agriculture/National Engineering Research Center for Information Technology in Agriculture/Key Laboratory for Information Technology in Agriculture, Ministry of Agriculture/Beijing Key Laboratory of Digital Plant, Beijing 100097
  • Received:2015-05-04 Online:2015-09-01 Published:2015-09-01

Abstract: Digital plant focuses on research of the theories, technologies, and methods of efficient perception and cognition to the multi-dimensional information in plant life, agricultural production, and ecological system. The critical, basic, common theories, and technical problems in digital agriculture, including the 3D digitization of plants and its environment, high-throughput information acquisition, context awareness, information fusion, structural-functional simulation, digital design, and accurate management decision, can be studied in depth through the interdisciplinary cooperation. The study of 3D digitization to plant structure is one of the most important topics in the area of digital plant. Recently many in-depth studies on the 3D digitization of plant structure had been reported by considering the real requirements from parameter measurement of plant structure, analysis of morphological structure, 3D reconstruction, structural-functional modeling and realistic rendering of 3D plant models. These studies were done not only from tissue, organ, plant to colony scale, but also from aboveground to underground. In organ scale, with the advance of MRI, CT, microscopic imaging techniques and the corresponding products, using these advanced instruments to measure internal structure data of plant has become possible and popular in more and more researchers. And this also provides an effective method for measuring and analyzing the microcosmic morphological structure of plant. To the 3D digitization of root system, the observation and measurement of plant root are very difficult for root always grows deep in soil. Although XCT, MRI and X-ray imaging techniques have been more and more widely used in recent years for detecting the morphological structure of root, these techniques can often only be used to measure a small part of a whole root. So the accurate, nondestructive and fast measurement of root structure is still a challenge. At colony scale, real measured data-based 3D reconstruction has become a main method for the three-dimensional reconstruction of plant colony. Currently, some researchers are trying to extract the morphological parameters of plant colony directly from 3D point cloud then realize the 3D reconstruction. While at the research of realistic rendering of 3D plant model, how to accurately measure the optical properties of various plant organs and to establish a corresponding mathematical model is the focus in this area. However, although some solutions had been reported, these proposed methods are still not satisfactory when considering the convenience and general applicability, and more in-depth studies are expected to be done. Lastly, the further study of digital plant was also discussed based on the analysis of the related technical progress.

Key words: digital plant, modeling of plant morphology and structure, 3D reconstruction, visualization

[1]    赵春江, 陆声链, 郭新宇, 肖伯祥, 温维亮. 数字植物及其技术体系探讨. 中国农业科学, 2010, 43(10): 2023-2030.
Zhao C J, Lu S L, Guo X Y, Xiao B X, Wen W L. Exploration of digital plant and its technology system. Scientia Agricultura Sinica, 2010, 43(10): 2023-2030. (in Chinese)
[2]    Prusinkiewicz P, Lindenmayer A. The Algorithmic Beauty of Plants. New York: Springer-Verlag, 1990: 228.
[3]    Kaandorp J A. Fractal Modeling Growth and Form in Biology. New York: Springer-Verlag, 1994.
[4]    赵星, de Reffye Philippe, 熊范纶, 胡包钢, 展志岗. 虚拟植物生长的双尺度自动机模型. 计算机学报, 2001, 24(6): 608-615.
Zhao X, de Reffye Philippe, Xiong F L, Hu B G, Zhan Z G. Dual-scale automaton model for virtual plant development. Chinese Journal of Computers, 2001, 24(6): 608-615. (in Chinese)
[5]    Prusinkiewicz P, Mündermann L, Karwowski R, Lane B. The use of positional information in the modeling of plants//In Proceedings of SIGGRAPH, ACM Press. MiamiBeach, USA, 2001: 289-300.
[6]    郑文刚, 郭新宇, 赵春江, 王纪华. 玉米叶片几何造型研究. 农业工程学报, 2004, 20(1): 152-154.
Zheng W G, Guo X Y, Zhao C J, Wang J H. Geometry modeling of the maize leaf canopy. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(1): 152-154. (in Chinese)
[7]    Hong S M, Simpson B, Baranoski G V G. Interactive venation-based leaf shape modeling. Computer Animation and Virtual Worlds, 2005, 6(3-4): 415-427.
[8]    Deussen O. Digital Design of Nature-Computer Generated Plants and Organics. New York: Bernd Lintermann Springer-Verlag, 2005.
[9]    Wither J, Boudon F, Cani M P, Godin C. Structure from silhouettes: A new pradigm for fast sketch-based design of trees. Computer Graphics Forum, 2009, 28(2): 541-550.
[10]   Zhu X, Jin X, You L. High-quality tree structures modeling using local convolution surface approximation. The Visual Computer,2015, 31(1): 69-82.
[11]   Hu B G, de Reffye P, Zhao X, Yan H P, Kang M Z. GreenLab: A new methodology towards plant functional-structural model-structural aspect//2003' International Symposium on Plant Growth, Modeling, Simulation, Visualization and Their Applications. Beijing, China. 2003: 21-35.
[12]   Vos J, Marcelis L F M, Visser J B. Functional-Structural Plant Modelling in Crop Production. Netherlands: Wageningen University and Research Center, 2007: 1-12.
[13]   Chelle M, Andrieu B. The nested radiosity model for the distribution of light within plant canopies. Ecological Modeling, 1998, 111: 75-91.
[14]   Da Silva D, Boudon F, Godin C, Sinoquet H. Multiscale framework for modeling and analyzing light interception by trees. Multiscale Modelling and Simulation, 2008, 7(2): 910-933.
[15]   Dragoni D, Laksa A N, Piccioni R M. Transpiration of apple trees in a humid climate using heat pulse sap flow gauges calibrated with whole-canopy gas exchange chambers. Agricultural and Forest Meteorology, 2005, 130: 85-94.
[16]   Goriely A, Neukirch S. Mechanics of climbing and attachment in twining plants. Physical Review Letters, 2006, 97: 184-302.
[17]   梁莉, 郭玉明. 作物茎秆生物力学性质与形态特性相关性研究. 农业工程学报, 2008, 24(7): 1-6.
Liang L, Guo Y M. Correlation study of biomechanical properties and morphological characteristics of crop stalks. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(7): 1-6. (in Chinese)
[18]   Livny Y, Yan F, Olson M, Chen B, Zhang H, EI-Sana J. Automatic reconstruction of tree skeletal structures from point clouds. ACM Transactions on Graphics, 2010, 29(6): 151-158.
[19]   Li Y, Fan X, Mitra N J, Chamovitz D, Cohen-Or D, Chen B. Analyzing growing plants from 4D point cloud data. ACM Transactions on Graphics,2013, 32(6): 2504-2507.
[20]   Delagrange S, Jauvin C, Rochon P. Pypetree: A tool for reconstructing tree perennial tissues from point clouds. Sensors,2014, 14: 4271-4289.
[21]   Smith C, Prusinkiewicz P. Simulation modeling of growing tissues. In 4th International Workshop on Functional-Structural Plant Models, 2004: 365-370.
[22]   Yoshida S, de Reuille B P, Lane B, Bassel G W, Prusinkiewicz P, Smith R S, Weijers Dolf. Genetic control of plant development by overriding a geometric division rule. Developmental Cell, 2014, 29(1): 75-87.
[23]   Betz O, Wegst U, Weide D, Heethoff M, Helfen L, Lee W K, Cloetens P. Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure. Journal of Microscopy, 2007, 227(1): 51-71.
[24]   Kerwin J, Scott M, Sharpe J, Puelles L, Robson S C, Margaret M, Ferran J L, Feng G, Baldock R, Strachan T, Davidson D, Lindsay S. 3 dimensional modelling of early human brain development using optical projection tomography. BMC Neuroscience, 2004, 5(1): 27.
[25]   Sands G B, Gerneke D A, Hooks D A, Green C R, Smaill B H, Legrice I J. Automated imaging of extended tissue volumes using confocal microscopy. Microscopy Research and Technique, 2005, 67(5): 227-239.
[26]   Windt C W, Gerkema E, Van As H. Most water in the tomato truss is imported through the xylem, not the phloem: A nuclear magnetic resonance flow imaging study. Plant Physiology, 2009, 151(2): 830-842.
[27]   Horigane A K, Takahashi H, Maruyama S, Ohtsubo K. Water penetration into rice grains during soaking observed by gradient echo magnetic resonance imaging. Journal of Cereal Science, 2006, 44(3): 307-316.
[28]   Lee S, Kim Y. In vivo visualization of the water-refilling process in xylem vessels using X-ray micro-imaging. Annals of Botany, 2008, 101(4): 595-602.
[29]   Brodersen C R, Choat B, Chatelet D S, Shackel K A, Matthews M A, McElrone A J. Xylem vessel relays contribute to radial connectivity in grapevine stems (Vitis vinifera and V. arizonica; Vitaceae). American Journal of Botany, 2013, 100(2): 314-321.
[30]   Lee K, Avondo J, Morrison H, Blot L, Stark M, Sharpe J, Bangham A, Coena E. Visualizing plant development and gene expression in three dimensions using optical projection tomography. The Plant Cell, 2006, 18: 2145-2156.
[31]   Dercksen V J, Brüß C, Stalling D, Gubatz S, Seiffert U, Hege H C. Towards automatic generation of 3D models of biological objects based on serial sections. Visualization in Medicine and Life Sciences. Heidelberg: Springer, 2008: 3-25.
[32]   Neumann G, George T S, Plassard C. Strategies and methods for studying the rhizosphere-the plant science toolbox. Plant Soil, 2009, 321: 431-456.
[33]   Wu J, Guo Y. An integrated method for quantifying root architecture of field-grown maize. Annals of Botany, 2014(114): 841-851.
[34]   管建慧, 郭新宇, 王纪华, 刘克礼, 郭晓东. 玉米不同部位根系生长发育规律的研究. 玉米科学, 2007, 15(6): 82-85, 88.
Guan J H, Guo X Y, Wang J H, Liu K L, Guo X D. Study on growth and development rule of different parts of maize root. Journal of Maize Sciences, 2007, 15(6): 82-85, 88. (in Chinese)
[35]   Hawkins H, George E. Effect of plant nitrogen status on the contribution of arbuscular mycorrhizal hyphae to plant nitrogen uptake. Physiologia Plantarum, 1999, 105(4): 694-700.
[36]   廖荣伟, 刘晶淼, 安顺清, 牛俊丽, 梁宏, 任三学, 乐章燕, 曹玉静, 李文静. 基于微根管技术的玉米根系生长监测. 农业工程学报, 2010, 26(10): 156-161.
Liao R W, Liu J M, An S Q, Niu J L, Liang H, Ren S X, Le Z Y, Cao Y J, Li W J. Monitor of corn root growth in soil based on minirhizotron technique. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(10): 156-161. (in Chinese)
[37]   崔喜红, 陈晋, 关琳琳. 探地雷达技术在植物根系探测研究中的应用. 地球科学进展, 2009, 24(6): 606-611.
Cui X H, Chen J, Guan L L. The application of ground penetrating radar to plant root system detection. Advances in Earth Science, 2009, 24(6): 606-611. (in Chinese)
[38]   Fang S, Yan X, Liao H. 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop. The Plant Journal,2009, 60: 1096-1108.
[39]   Iyer-Pascuzzi A S, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz J S, Benfey P N. Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiology, 2010, 152: 1148-1157.
[40]   Gregory P J, Hutchison D J, Read D B, Jenneson P M, Gilboy W B, Morton E J. Non-invasive imaging of roots with high resolution X-ray micro-tomography. Plant and Soil, 2003, 255(1): 351.
[41]   Mairhofer S, Zappala S, Tracy S R, Sturrock C, Bennett M, Mooney S J, Pridmore T. RooTrak: Automated recovery of three-dimensional plant root architecture in soil from X-ray microcomputed tomography images using visual tracking. Plant Physiology, 2012, 158(2): 561-569.
[42]   Schulz H, Postma J A, van Dusschoten D, Scharr H, Behnke S. Plant root system analysis from MRI Images, computer vision, imaging and computer graphics. Theory and Application, 2013: 411-425.
[43]   Stefanelli D, Fridman Y, Perry R L. DigiRoot™: New software for root studies. European Journal of Horticultural Science, 2009, 74(4): 169-174.
[44]   Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison R J, Blatt M R, Amtmann A A. EZ-Rhizo: Integrated software for the fast and accurate measurement of root system architecture. The Plant Journal, 2009, 57: 945-956.
[45]   Le Bot J, Serra V, Fabre J, Draye X, Adamowicz S, Pagès L. DART: A software to analyse root system architecture and development from captured images. Plant and Soil, 2010, 326(1-2): 261-273.
[46]   Clark R T, MacCurdy R B, Jung J K, Shaff J E, McCouch S R, Aneshansley D J, Kochian L V. Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiology, 2011, 156(2): 455-465.
[47]   张吴平, 郭焱, 李保国. 小麦苗期根系三维生长动态模型的建立与应用. 中国农业科学, 2006, 39(11): 2261-2269.
Zhang W P, Guo Y, Li B G. Development and application of three-dimensional growth model of root system in wheat seedling. Scientia Agricultura Sinica, 2006, 39(11): 2261-2269. (in Chinese)
[48]   邓旭阳, 周淑秋, 郭新宇, 赵春江, 王纪华. 玉米根系几何造型研究. 工程图学学报, 2004, 25(4): 62-66.
Deng X Y, Zhou S Q, Guo X Y, Zhao C J, Wang J H. Study on the geometry modeling for corn root system. Journal of Engineering Graphics, 2004, 25(4): 62-66. (in Chinese)
[49]   Han L, Gresshoff P M, Hanan J. A functional-structural modeling approach to autoregulation of nodulation. Annals of Botany, 2011, 107(5): 855-863.
[50]   Casson S A, Lindsey K. Genes and signaling in root development. New Phytologist, 2003, 158(2): 11-38.
[51]   Leitner D, Klepsch S, Bodner G, Schnepf A. A dynamic root system growth model based on L-systems. Plant and Soil, 2010, 332(1-2): 177-192.
[52]   Dupuy L, Gregory P J, Bengough A G. Root growth models: Towards a new generation of continuous approaches. Journal of Experimental Botany, 2010, 61(8): 2131-2143.
[53]   Pagès L, Moreau D, Sarlikioti V, Boukcim H, Nguyen C. ArchiSimple: A parsimonious model of the root system architecture, 2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, 2012: 297-303.
[54]   徐其军, 汤亮, 顾东祥, 姜海燕, 曹卫星, 朱艳. 基于形态参数的水稻根系三维建模及可视化. 农业工程学报, 2010, 26(10): 188-194.
Xu Q J, Tang L, Gu D X, Jiang H Y, Cao W X, Zhu Y. Architectural parameter-based three dimensional modeling and visulization of rice roots. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(10): 188-194. (in Chinese)
[55]   赵春江, 王功明, 郭新宇, 陈立平, 王纪华. 基于交互式骨架模型的玉米根系三维可视化研究. 农业工程学报, 2007, 23(9): 1-6.
Zhao C J, Wang G M, Guo X Y, Chen L P, Wang J H. 3D visualization of corn root system based on interactive framework model. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(9): 1-6. (in Chinese)
[56]   向子云, 罗锡文, 周学成, 严小龙, 罗良平, 赵相胜. 多层螺旋CT三维成像技术观测植物根系的实验研究. CT理论与应用研究, 2006, 15(3): 1-5.
Xiang Z Y, Luo X W, Zhou X C, Yan X L, Luo L P, Zhao X S. CT theory and applications experimental study on observation of original shape of crop root system with multi helical CT technology. CT Theory and Applications, 2006, 15(3): 1-5. (in Chinese)
[57]   Flavel R J, Guppy C N, Tighe M, Watt M, McNeill A, Young I M. Non-destructive quantification of cereal roots in soil using high- resolution X-ray tomography. Journal of experimental botany, 2012: 1-9.
[58] Mairhofer S, Zappala S, Tracy S, Sturrock C, Bennett M J, Mooney S J, Pridmore T P. Recovering complete plant root system architectures from soil via X-ray μ-Computed Tomography. Plant Methods, 2013, 9: 8.
[59]   Fang S, Yan X, Liao H. 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop. The Plant Journal, 2009, 60: 1096-1108.
[60]   温维亮,郭新宇,赵春江,王传宇,肖伯祥. 作物根系构型三维探测与重建方法研究进展. 中国农业科学, 2015, 48(3): 436-448.
Wen W L, Guo X Y, Zhao C J, Wang C Y, Xiao B X. Crop roots configuration and visualization: A review. Scientia Agricultura Sinica, 2015, 48(3): 436-448. (in Chinese)   
[61]   Sinoquet H, Rivet P, Godin C. Assessment of the three-dimensional architecture of walnut trees using digitising. Silva Fennica, 1997, 31: 265-273.
[62]   郭焱, 李保国. 玉米冠层三维结构研究. 作物学报, 1998, 24(6): 1006-1009.
Guo Y, Li B G. Studies on three dimensional structures of maize canopy. Acta Agronomica Sinica, 1998, 24(6): 1006-1009. (in Chinese)
[63]   Louarn G, Lecoeur J, Lebon E. A three-dimensional statistical reconstruction model of grapevine simulating canopy structure variability within and between cultivar/training system pairs. Annals of Botany, 2008, 101: 1167-1184.
[64]   Lu S L, Guo X Y, Zhao C J, Qian T T, Wen W L, Du J J. Multi-scale reconstruction of crop canopy//The 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. Shanghai, China, 2012: 262-269.
[65]   Qian T T, Lu S L, Zhao C J, Guo X Y, Wen W L. Heterogeneity analysis of cucumber canopy in a solar greenhouse under natural sunlight. Journal of Integrative Agriculture, 2014, 13(12): 2645-2655.
[66]   Qian T T, Zhao C J, Guo X Y, Lu S L. Introducing an azimuth model into functional-structural modeling of cucumber canopy. Sensor Letters, 2014, 12(3-5): 892-896.
[67]   Livny Y, Yan F, Olson M, Chen B, Zhang H, El-Sana J. Automatic reconstruction of tree skeletal structures from point clouds. ACM Transactions on Graphics, 2010, 29(6): 1-8
[68]   Leeuwen M V, Nicholas C C, Thomas H, Michael A W, Glenn J N, Darius S C. Automated reconstruction of tree and canopy structure for modeling the internal canopy radiation regime. Remote Sensing of Environment, 2013, 136: 286-300.
[69]   Mochizuki S, Horie D, Cai D. Stealing Autumn Colors//ACM SIGGRAPH 2005 Posters. Los Angeles, California, USA: ACM Press, 2005.
[70]   Hanrahan P, Krueger W. Reflection from layered surfaces due to subsurface scattering//Proceedings of the 20th annual conference on Computer graphics and interactive techniques, Anaheim, CA, 1993.
[71]   Wang L, Wang W, Dorsey J, Guo B, Shum H Y. Real-time rendering of plant leaves//SIGGRAPH '06, New York, NY, USA, 2006.
[72]   Braitmaier M, Diepstraten J, Ertl T. Real-time rendering of seasonal influenced trees//Proceedings of Theory and Practice of Computer Graphics, Los Alamitos: IEEE Computer Society Press, 2004: 152-159.
[73]   Zhou N, Dong W M, Mei X. Realistic simulation of seasonal variant maples//Proceedings of the 2th Plant Growth Modeling and Applications, Los Alamitos: IEEE Computer Society Press, 2006: 295-301
[74]   Desbenoit B, Galin E, Akkouche S, Grosjean J. Modeling autumn sceneries//Proceedings of Eurographics’06, Vienna, Austria: Eurographics Association, 2006: 107-110.
[75]   Wang J P, Tong X, Lin S, Pan M, Wang C, Bao H, Guo B, Shum H Y. Appearance manifolds for modeling time-variant appearance of materials. ACM Transactions on Graphics,2006, 25(3): 754-761.
[76]   迟小羽, 盛斌, 杨猛, 陈彦云, 吴恩华. 秋季植物叶子表观的模拟. 软件学报, 2009, 20(3): 702-712.
Chi X Y, Sheng B, Yang M, Chen Y Y, Wu E H. Simulation of autumn leaves. Journal of Software, 2009, 20(3): 702-712. (in Chinese)
[77]   Gu J, Tu C, Ramamoorthi R, Belhumeur P, Matusik W, Nayar S K. Time-varying surface appearance: Acquisition, modeling and rendering. ACM Transactions on Graphics, 2006, 25(3): 762-771.
[78]   田原. 小麦与玉米叶部表观建模与应用[D]. 合肥: 中国科技大学, 2011.
Tian Y. Appearance modeling of wheat and maize leaves[D]. Hefei: University of Science and Technology of China, 2011. (in Chinese)
[79]   陆声链, 汪丽萍, 何火娇, 郭新宇. 基于相对叶绿素含量的黄瓜叶色仿真. 农业机械学报, 2014, 45(3): 250-254.
Lu S L, Wang L P, He H J, Guo X Y. Visual simulation of cucumber leaf color based on the relative content of chlorophyll. Transactions of the Chinese Society for Agricultural Machinery. 2014, 45(3): 250-254. (in Chinese)
[80]   赵春江, 苗腾, 郭新宇, 陆声链. 融合生理因子的植物叶片表观建模. 计算机辅助设计与图形学学报, 2014, 26(4): 597-608.
Zhao C J, Miao T, Guo X Y, Lu S L. Plant appearance modeling of plant leaf using physiological parameters. Journal of Computer-Aided Design & Computer Graphics,2014, 26(4): 597-608. (in Chinese) 
[81]   苗腾. 植物叶片表观及其行为特性建模与可视化仿真技术研究[D]. 北京: 中国农业大学, 2012.
Miao T. Research on techniques for modeling and visual simulating characteristic behaviors of plant leaves[D]. Beijing: China Agricultural University, 2012. (in Chinese)
[82]   郭焱, 李保国. 虚拟植物的研究进展. 科学通报, 2001, 46(4): 273-280.
Guo Y, Li B G. New advances in virtual plant research. Chinese Science Bulletin, 2001, 46(4): 273-280. (in Chinese)
[83]   曹卫星, 朱 艳, 田永超, 姚霞, 刘小军. 数字农作技术研究的若干进展与发展方向. 中国农业科学, 2006, 39(2): 281-288.
Cao W X, Zhu Y, Tian Y C, Yao X, Liu X J. Research progress and prospect of digital farming techniques. Scientia Agricultura Sinica, 2006, 39(2): 281-288. (in Chinese)   
[1] WEN Wei-liang, GUO Xin-yu, ZHAO Chun-jiang, WANG Chuan-yu, XIAO Bo-xiang. Crop Roots Configuration and Visualization: A Review [J]. Scientia Agricultura Sinica, 2015, 48(3): 436-448.
[2] WANG Xiao, WEN Wei-Liang, GUO Xin-Yu, WANG Chuan-Yu. 3D Reconstruction and Porosity Computing of Soil Based on SFS Algorithm [J]. Scientia Agricultura Sinica, 2013, 46(23): 4950-4956.
[3] WEN Wei-liang, GUO Xin-yu, LU Sheng-lian, XIAO Bo-xiang, ZHAO Chun-jiang. Applications and Prospects of Surface Modeling Method in Digital Plant [J]. Scientia Agricultura Sinica, 2011, 44(7): 1338-1345.
[4] ZHAO Chun-jiang,LU Sheng-lian,GUO Xin-yu,XIAO Bo-xiang,WEN Wei-liang
. Exploration of Digital Plant and Its Technology System
[J]. Scientia Agricultura Sinica, 2010, 43(10): 2023-2030 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!