Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (6): 1119-1127.doi: 10.3864/j.issn.0578-1752.2014.06.008

• PLANT PROTECTION • Previous Articles     Next Articles

Progresses in Study of Virus-Based Vectors of Fruit Trees

 ZHOU  Yan   

  1. National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712
  • Received:2013-08-14 Online:2014-03-15 Published:2013-11-04

Abstract: Virus-based vectors are commonplace tools for the production of proteins or induction of RNA silencing in plants. But even if the existing vectors from herbaceous plant viruses could infect fruit trees, the time for systemic infection and analysis of the expressed genes in trees generally exceeds the stability of known virus-based vectors. Now this problem has been solved by using virus-based vectors from fruit trees. Progress in studies on virus-based vectors from fruit trees was summarized. The results obtained in recent years are as following: (1) The transmission, host range, differentiation of pathogenicity, genome organization and regulation of gene expression of Citrus tristeza virus (CTV), Citrus leaf blotch virus (CLBV), Apple latent spherical virus (ALSV), Plum pox virus (PPV), Grapevine virus A (GVA) and Grapevine leafroll-associated virus (GLRaV) have been elucidated. Construction of Agrobacterium-mediated infectious cDNA clones or infectious RNA transcripts derived from the full-length cDNA clones of these fruit crops viruses. And then, a foreign open reading frame (ORF) such as green fluorescence protein (GFP) gene, β-glucuronidase gene (GUS) was inserted between coat protein (CP) gene and the adjacent gene as a reporter. The expression of the foreign gene was driven by a duplicated native CP subgenomic (sg) RNA controller element (CE) or an introduced heterologous CE of other virus. (2) Virus-based vectors from fruit trees have been used to elucidate cell-to-cell as well as long-distance movement, spatial separation, localization within the host cells, the processes of stem pitting induced by CTV in Citrus macrophylla and the mechanism of CTV superinfection exclusion. These vectors also can be used as virus induced gene silencing (VIGS) vectors to elucidate gene function. Furthermore, CTV-RNAi vector has been demonstrated to silence the endogenous genes of Diaphorina citri and Candidatus Liberibacter asiaticus. (3) From the environmental safety standpoint, the virus used as the basis of the vector should not cause diseases of plants and not be transmitted by natural vector. Thus, one should choose the non-vectored mild strains. A second approach is to mutate the viral vector, eliminate the determinants needed for pathogenicity and vector-mediated spread. Some viruses of fruit trees are limited to phloem-associated cells. Although the vectors are not the appropriate vectors for expression of genes in other tissues, phloem-limited viruses have resulted in the most stable vectors. Furthermore, this limitation can be reduced somewhat by producing proteins with secretion signal peptides to export the protein out of the cell into the intercellular space. Finally, the stability of virus-based vectors from fruit trees could be improved by using promoters from different tobamoviruses instead of repeated promoters.

Key words: fruit tree , virus-based vector , Citrus tristeza virus

[1]Rabindran S, Dawson W O. Assessment of recombinants that arise from the use of a TMV-based transient expression vector. Virology, 2001, 284(2): 182-189.

[2]Folimonov A S, Folimonova S Y, Bar-Joseph M, Dawson W O. A stable RNA virus-based vector for citrus trees. Virology, 2007, 368(1): 205-216.

[3]Ion-Nagy L, Lansac M, Eyquard J P, Salvador B, Garcia J A, Le G O, Hernould M, Schurdi-Levraud V, Decroocq V. PPV long-distance movement is occasionally permitted in resistant apricot hosts. Virus Research, 2006, 120(1/2): 70-78.

[4]Folimonova S Y, F olimonov A S, Satyanarayana T, Dawson W O. Citrus tristeza virus: survival at the edge of the movement continuum. Journal of Virology, 2008, 82(13): 6546-6556.

[5]Zhou Z S, Dell’Orco M, Saldarelli P, Turturo C, Minafra A, Martelli G P. Identification of an RNA-silencing suppressor in the genome of Grapevine virus A. Journal of General Virology, 2006, 87: 2387-2395.

[6]Tatineni S, Dawsona W O. Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. Journal of Virology, 2012, 86(15): 7850-7857.

[7]Agüero J, Ruiz-Ruiz S, Vives M C, Velázquez K, Navarro L, Peña L, Moreno P, Guerri J. Development of viral vectors based on Citrus leaf blotch virus to express foreign proteins or analyze gene function in citrus plants. Molecular Plant-Microbe Interactions, 2012, 25(10): 1326-1337.

[8]Folimonova S Y, Robertson C J, Shilts T, Folimonov A S, Hilf M E, Garnsey S M, Dawson W O. Infection with strains of Citrus tristeza virus does not exclude superinfection by other strains of the virus. Journal of Virology, 2010, 84(3): 1314-1325.

[9]Igarashi A, Yamagata K, Sugai T, Takahashi Y, Sugawara E, Tamura A, Yaegashi H, Yamagishi N, Takahashi T, Isogai M, Takahashi H, Yoshikawa N. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology, 2009, 386(2): 407-416.

[10]Zhou Y, Zhou C Y, Song Z, Liu K H, Yang F Y. Characterization of Citrus tristeza virus isolates by indicators and by molecular biology methods. Agricultural Sciences in China, 2007, 6(5): 101-105.

[11]Zhao X Y, Zhou C Y, Tang K Z, Jiang Y H, Yang F Y, Huang S, Li T  S, Liu K H, Liu Y, Chen Q Y. Preliminary evalution of the tolerance of 18 pummelo cultivars to stem-pitting tristeza//Proceedings of the 15th Conference of the International Organization of Citrus Virologist, 2002: 172-175.

[12]周彦, 周常勇, 李中安, 王雪峰, 刘科宏. 利用弱毒株交叉保护技术防治甜橙茎陷点型衰退病. 中国农业科学, 2008, 41(12): 4085-4091.

Zhou Y, Zhou C Y, Li Z A, Wang X F, Liu K H. Mild strains cross protection against stem-pitting tristeza of sweet orange. Scientia Agricultura Sinica, 2008, 41(12): 4085-4091. (in Chinese)

[13]Broadbent P, Brlansky R H, Indsto J. Biological characterization of Australian isolates of Citrus tristeza virus and separation of subisolates by single aphid transmission. Plant Disease, 1996, 80(3): 329-333.

[14]Bar-Joseph M, Marcus R, Lee R F. The continuous challenge of Citrus tristeza virus control. Annual Review of Phytopathology, 1989, 27: 291-316.

[15]Karasev A V, Boyko V P, Gowda S, Nikolaeva O V, Hilf M E, Koonin E V, Niblett C L, Cline K, Gumpf D J, Lee R F, Garnsey S M, Lewandowski D J, Dawson W O. Complete sequence of the Citrus tristeza virus RNA genome. Virology, 1995, 208(2): 511-520.

[16]López C, Ayllon M A, Navas-Castillo J, Moreno P, Flores R. Molecular variability of the 5-and 3-terminal regions of Citrus tristeza virus RNA. Phytopathology, 1998, 88(7): 685-691.

[17]Dolja V V, Kreuze J F, Valkonen J P. Comparative and functional genomics of Closteroviruses. Virus Research, 2006, 117(1): 38-51.

[18]Satyanarayana T, Gowda S, Boyko V P, Albiach-Marti M R, Mawassi M, Navas-Castillo J, Karasev A V, Dolja V, Hilf M E, Lewandowski D J, Moreno P, Bar-Joseph M, Garnsey S M. Dawson W O. An engineered closterovirus RNA replication and analysis of heterologous terminal sequences for replication. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(13): 7433-7438.

[19]Gowda S, Satyanarayana T, Davis C L, Navas-Castillo J, Albiach-Marti M R, Mawassi M, Valkov N, Bar-Joseph M, Moreno P, Dawson W O. The p20 gene product of Citrus tristeza virus accumulates in the amorphous inclusion bodies. Virology, 2000, 274(2): 246-254.

[20]Satyanarayana T, Gowda S, Ayllón M A, Albiach-Martí M R, Rabindran S, Dawson W O. The p23 protein of Citrus tristeza virus controls asymmetrical RNA accumulation. Journal of Virology, 2002, 76(2): 473-483.

[21]Albiach-Martí M R, Robertson C, Gowda, S, Tatineni S, Belliure B, Garnsey S M, Folimonova S Y, Moreno P, Dawson W O. The pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3´-terminal region of the viral genome. Molecular Plant Pathology, 2010, 11(1): 55-67.

[22]Lu R, Folimonov A, Shintaku M, Li W X, Falk B W, Dawson W O, Ding S W. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15742-15747.

[23]Tatineni S, Robertson C J, Garnsey S M, Bar-Joseph M, Gowda S, Dawson W O. Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology, 2008, 376(2): 297-307.

[24]Tatineni S, Robertson C J, Garnsey S M, Dawson W O. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(42): 17366-17371.

[25]Ayllón M A, Gowda S, Satyanarayana T, Karasev A V, Adkins S, Mawassi M, Guerri J, Moreno P, Dawson W O. Effects of modi?cation of the transcription initiation site context on Citrus tristeza virus subgenomic RNA synthesis. Journal of Virology, 2003, 77(17): 9232-9243.

[26]Ayllón M A, Satyanarayana T, Gowda S, Dawson W O. An atypical 3′-controller element mediates low-level transcription of the p6 subgenomic mRNA of Citrus tristeza virus. Molecular Plant Pathology, 2005, 6(2): 165-176.

[27]Ayllón M A, Gowda S, Satyanarayana T, Dawson W O. cis-acting elements at opposite ends of the Citrus tristeza virus genome differ in initiation and termination of subgenomic RNAs. Virology, 2004, 322(1): 41-50.

[28]Silva G, Marques N, Nolasco G. The evolutionary rate of Citrus tristeza virus ranks among the rates of the slowest RNA viruses. Journal of General Virology, 2012, 93(2): 419-429.

[29]Weng Z M, Barthelson R, Gowda S, Hilf M E, Dawson W O, Galbraith D W, Xiong Z G. Persistent infection and promiscuous recombination of multiple genotypes of an RNA virus within a single host generate extensive diversity. Plos One, 2007, 2(9): e917.

[30]Albiach-Martí M R, Mawassi M, Gowda S, Satyanarayana T, Hilf M E, Shanker S, Almira E C, Vives M C, Lopez C, Guerri J, Flores R, Moreno P, Garnsey S M, Dawson W O. Sequences of Citrus tristeza virus separated in time and space are essentially identical. Journal of Virology, 2000, 74(15): 6856-6865.

[31]Satyanarayana T, Bar-Joseph M, Mawassi M, Albiach-Martí M R, Ayllón M A, Gowda S, Hilf M E, Moreno P, Garnsey S M, Dawson W O. Amplification of Citrus tristeza virus from a cDNA clone and infection of citrus trees. Virology, 2001, 280(1): 87-96.

[32]Folimonova S Y. Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. Journal of Virology, 2012, 86(10): 5554-5561.

[33]Gowda S, Satyanarayana T, Robertson C J, Garnsey S M, Dawson W O. Infection of citrus plants with virions generated in Nicotiana benthamiana plants agroin?ltrated with a binary vector based Citrus tristeza viru//Proceedings of the 16th Conference of the International Organization of Citrus Virologist, 2005: 23-34.

[34]Ambrós S, El-Mohtar C, Ruiz-Ruiz S, Peña L, Guerri J, Dawson W O, Moreno P. Agroinoculation of Citrus tristeza virus causes systemic infection and symptoms in the presumed nonhost Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 2011, 24 (10): 1119-1131.

[35]Orbovi?a V, Soriaa P, Mooreb G A, Grossera J W. The use of Citrus tristeza virus (CTV) containing a green fluorescent protein gene as a tool to evaluate resistance/tolerance of transgenic citrus plants. Crop Protection, 2011, 30(5): 572-576.

[36]Ruiz-Ruiz S, Soler N, Sánchez-Navarro J, Fagoaga C, López C, Navarro L, Moreno P, Peña L, Flores R. Citrus tristeza virus p23: determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis. Acta Phytopathologica Sinica, 2013, 43(Suppl.): 328.

[37]El-Shesheny I, Hajeri S, El-Hawary I, Gowda S, Killiny N. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality. PLoS ONE, 2013, 8(5): e65392.

[38]Hawkings C, Morgan K, Shaffer L, Powell C, Borovsky D, Cave R, Dawson B, Gowda S, Shatters R G. RNAi-based strategy for Asian citrus psyllid (Diaphorina citri) control: a method to reduce the spread of citrus greening disease//3rd International Reseach Conference on Huanglongbing-IRCHLB III, 2013: 81.

[39]Hajeri S, El-Mohtar C, Dawson W O, Gowda S. Citrus tristeza virus-based RNA-interference (RNAi) vector and its potential in combating citrus Huanglongbing (HLB)//3rd International Reseach Conference on Huanglongbing-IRCHLB III, 2013: 111.

[40]Vives M C, Galipienso L, Navarro L, Moreno P, Guerri J. The nucleotide sequence and genomic organization of Citrus leaf blotch virus: candidate type species for a new virus genus. Virology, 2001, 287(1): 225-233.

[41]Vives M C, Martín S, Ambrós S, Renovell A, Navarro L, Pina J A, Moreno P, Guerri J. Development of a full-genome cDNA clone of Citrus leaf blotch virus and infection of citrus plants. Molecular Plant Pathology, 2008, 9(6): 787-797.

[42]Agüero J, Ruiz-Ruiz S, Vives M C, Velázquez K, Navarro L, Peña L, Moreno P, Guerri J. Development of viral vectors based on Citrus leaf blotch virus to express foreign proteins or analyze gene function in citrus plants. Molecular Plant-Microbe Interactions, 2012, 25(10): 1326-1337.

[43]Agüero J, Vives M C, Velázquez K, Ruiz-Ruiz S, Juarez J, Navarro L, Moreno P, Guerri J. Citrus leaf blotch virus invades meristematic regions in Nicotiana benthamiana and citrus. Molecular Plant Pathology, 2013, 25(10): 1326-1337.

[44]Ohira K, Namba S, Rozanov M, Kusumi T, Tsuchizaki T. Complete sequence of an infectious full-length cDNA clone of Citrus tatter leaf capillovirus: comparative sequence analysis of capillovirus genomes. Journal of General Virology, 1995, 76(9): 2305-2309.

[45]Tatineni S, Afunian M R, Hilf M E, Gowda S, Dawson W O, Garnsey S M. Molecular characterization of Citrus tatter leaf virus historically associated with meyer lemon trees: complete genome sequence and development of biologically active in vitro transcripts. Phytopathology, 2009, 99(4): 423-431. 

[46]Huang Q, Hartung J S. Cloning and sequence analysis of an infectious clone of Citrus yellow mosaic virus that can infect sweet orange via Agrobacterium-mediated inoculation. Journal of General Virology, 2001, 82(10): 2549-2558.

[47]Li C, Yoshikawa N, Takahashi T, Ito T, Yoshida K, Koganezawa H. Nucleotide sequence and genome organization of Apple latent spherical virus: a new virus classi?ed into the family Comoviridae. Journal of General Virology, 2000, 81(2): 541-547.

[48]Nakamura K, Yamagishi N, Isogai M, Komori S, Ito T, Yoshikawa N. Seed and pollen transmission of Apple latent spherical virus in apple. Journal of General Plant Pathology, 2011, 77(1): 48-53.

[49]Li C, Sasaki N, Isogai M, Yoshikawa N. Stable expression of foreign proteins in herbaceous and apple plants using Apple latent spherical virus RNA2 vectors. Archives of Virology, 2004, 149(8): 1541-1558.

[50]Takahashi, T, Sugawara, T, Yamatsuta, T, Isogai M, Natsuaki T, Yoshikawa N. Analysis of the spatial distribution of identical and two distinct virus populations differently labeled with cyan and yellow ?uorescent proteins in coinfected plants. Phytopathology, 2007, 97(10): 1200-1206.

[51]Sasaki S, Yamagishi N, Yoshikawa N. Efficient virus-induced gene silencing in apple, pear and Japanese pear using Apple latent spherical virus vectors. Plant Methods, 2011, 7(1): 15.

[52]Yamagishi N, Sasaki S, Yamagata K, Komori S, Nagase M, Wada M, Yamamoto T, Yoshikawa N. Promotion of ?owering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the Apple latent spherical virus vector. Plant Molecular Biology, 2011, 75(2): 193-204.

[53]Candresse T, Cambra M, Dallot S, Lanneau M, Asensio M, Gorris M T, Revers F, Macquaire G, Olmos A, Boscia D, Quiot J B, Dunez J. Comparison of monoclonal antibodies and polymerase chain reaction assays for the typing of isolates belonging to the D and M serotypes of Plum pox potyvirus. Phytopathology, 1998, 88(3): 198-204.

[54]Riechmann J L, Laín S, García J A. Highlights and prospects of potyvirus molecular biology. Journal of General Virology, 1992, 73(1): 1-16.

[55]Riechmann J L, Laín S, García J A. Infectious in vitro transcripts from a plum pox potyvirus cDNA clone. Virology, 1990, 177(2): 710-716.

[56]Guo S H, López-Moya J J, García J A. Susceptibility to recombination rearrangements of a chimeric plum pox potyvirus genome after insertion of a foreign gene. Virus Research, 1998, 57(2): 183-195.

[57]López-Moya J J, García J A. Construction of a stable and highly infectious intron-containing cDNA clone of Plum pox potyvirus and its use to infect plants by particle bombardment. Virus Research, 2000, 68(2): 99-107.

[58]Lansac M, Eyquard J P, Salvador B, Garcia J A, Le Gall O, Decroocq V, Escalettes V S. Application of GFP-tagged Plum pox virus to study Prunus–PPV interactions at the whole plant and cellular levels. Journal of Virological Methods, 2005, 129(2): 125-133.

[59]Maliogka V, Salvador B, Carbonell A, Sáenz P, León D S, Oliveros J C, Delgadillo M, García J A, Simón-Mateo C. Virus variants with differences in the P1 protein coexist in a Plum pox virus population and display particular host-dependent pathogenicity features. Molecular Plant Pathology, 2012, 13(8): 877-886.

[60]Pérez J J, Udeshi N D, Shabanowitz J, CiordiaS, JuárezS, Scott C, Olszewski NE, Hunt D F, GarcíaJ A. O-GlcNAc modification of the coat protein of the potyvirus Plum pox virus enhances viral infection. Virology, 2013, 442(2): 122-131. 

[61]Notte P L, Minafra A, Saldarelli P. A spot-PCR technique for the detection of phloem-limited grapevine virus. Journal of Virological Methods, 1997, 66(1): 103-108.

[62]Galiakparov N, Tanne E, Sela I, Gafny R. Infectious RNA transcripts from Grapevine Virus A cDNA clone. Virus Genes, 1999, 19(3): 235-242.

[63]Galiakparov N, Tanne E, Sela I, Gafny R. Functional analysis of the Grapevine virus A genome. Virology, 2003, 306(1): 42-50.

[64]Haviv S, Galiakparov N, Goszczynski E D, Batuman O, Czosnek H, Mawassi M. Engineering the genome of Grapevine Virus A into a vector for expression of proteins in herbaceous plants. Journal of Virological Methods, 2006, 132(1/2): 227-231.

[65]Muruganantham M, Moskovitz Y, Haviv S, Horesh T, Fenig-stein A, du Preez J, Stephan D, Burger J T, Mawassi M. Grapevine virus A-mediated gene silencing in Nicotiana benthamiana and Vitis vinifera. Journal of Virological Methods, 2009, 155(2): 167-174.

[66]du Preez J. The development and characterization of grapevine virus-based expression vectors[D]. South Africa: Stellenbosch University, 2010.

[67]Meng B, Li C, Goszczynski D E, Gonsalves D. Genome sequences and structures of two biologically distinct strains of Grapevine leafroll-associated virus 2 and sequence analysis. Virus Genes, 2005, 31(1): 31-41.

[68]Chibaa M, Reeda J C, Prokhnevskya A I, Chapmana E J, Mawassib M, Kooninc E V, Carringtona J C, Dolja V V. Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology, 2006, 346(1): 7-14.

[69]Maliogka V I, Dovas C I, Katis N I. Generic and species-specific detection of viruses belonging to an evolutionary distinct lineage within the Ampelovirus genus. Journal of Virological Methods, 2008, 154(1/2): 41-47.

[70]Liu Y P, Peremyslov V V, Medina V, Dolja V V. Tandem leader proteases of Grapevine leafroll-associated virus-2: host-speci?c functions in the infection cycle. Virology, 2009, 383(2): 291-299.

[71]Kurth E G, Peremyslov V V, Prokhnevsky A I, Kristin D. Miller K M, Carrington J C, Dolja V V. Virus-derived gene expression and RNA interference vector for grapevine. Journal of Virology, 2012, 86(11): 6002-6009.

[72]Gleba Y, Klimyuk V, Marillonnet S. Viral vectors for the expression of proteins in plants. Current Opinion in Biotechnology, 2007, 18(2): 134-141.

[73]Peretz Y, Mozes-Koch R, Akad F, Tanne E, Czosnek H, Sela I. A universal expression/silencing vector in plants. Plant Physiology, 2007, 145(4): 1251-1263.

[74]Jia H F, Chai Y M, Li C L, Qin L, Shen Y Y. Cloning and characterization of the H subunit of a magnesium chelatase gene (PpCHLH) in peach. Journal of Plant Growth Regulation, 2011, 30(4): 445-455.
[1] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[2] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[3] WANG YaFei, RUAN Tao, ZHOU Yan, WANG XueFeng, WU GenTu, SUN XianChao, ZHOU ChangYong, QING Ling. Genetic Variation of p20 of the Severe and Mild Strains of CTV in the Sweet Orange and Pummelo [J]. Scientia Agricultura Sinica, 2017, 50(7): 1343-1350.
[4] LI Fang, DENG Zi-niu, ZHAO Ya, LI Da-zhi, DAI Su-ming. Construction and Transformation of RNAi Vector for Citrus tristeza virus Gene p23 [J]. Scientia Agricultura Sinica, 2016, 49(20): 3927-3933.
[5] LI Ling-Di, ZHOU Chang-Yong, LI Zhong-An, TIAN Xiao, WANG Yong-Jiang, TANG Ke-Zhi, ZHOU Yan, LIU Jin-Xiang. Development and Application of a Real-Time RT-PCR Approach for Quantification of CTV in Toxoptera citricida [J]. Scientia Agricultura Sinica, 2013, 46(3): 525-533.
[6] LIU Yong-Qing, ZHOU Chang-Yong, ZHOU Yan. Progress in Studies on Resistance to Citrus tristeza virus by Genetic Engineering Measures [J]. Scientia Agricultura Sinica, 2012, 45(14): 2848-2855.
[7] LIU Yong-qing,CAO Meng-ji,WANG Xue-feng,LI Zhong-an,TANG Ke-zhi,ZHOU Chang-yong
. Rapid Molecular Detection Technologies of Citrus tristeza virus in Plant Tissues and Single Aphid
[J]. Scientia Agricultura Sinica, 2010, 43(7): 1397-1403 .
[8] . Molecular Characterization Analysis of Citrus tristeza virus infected Chinese Wild Citrus [J]. Scientia Agricultura Sinica, 2007, 40(5): 932-939 .
[9] ,,,,. Studies on Increase of Yield and Soil Moisture of Fruit Tree by Using Super Absorbent Polymers [J]. Scientia Agricultura Sinica, 2005, 38(12): 2486-2491 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!