Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (7): 1380-1386.doi: 10.3864/j.issn.0578-1752.2012.07.016

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Role of wnt/β-catenin in the Differentiation of Satellite Cells into Muscle Fibers

 SHI  Xin-E, LIU  Yue-Guang, YANG  Qiu-Mei, CHEN  Zong-Zheng, YANG  Gong-She   

  1. 西北农林科技大学动物科技学院/动物脂肪沉积与肌肉发育实验室,陕西杨凌 712100
  • Received:2011-07-15 Online:2012-04-01 Published:2011-11-02

Abstract: Satellite cells are established as the major stem cells contributing to gowth and development as well as regeneration of skeletal muscle. Differentiation of satellite cell and muscle fiber type formation are closely related to meat quality. wnt/β-catenin is an important pathway regulating these events. Recently, more and more research focused on skeletal muscle growth and regeneration regulated by wnt/β-catenin. And many interesting results are published. The role of wnt/β-catenin in the differentiation of satellite cells into different type of muscle fiber and turn-over was reviewed.

Key words: wnt/β-catenin, satellite cells, muscle fiber types

[1]Lefaucheur L, Gerrard D. Muscle fiber plasticity in farm animals. Journal of Animal Science, 2000, 77(1): 1-19.

[2]Lefaucheur L, Milan D, Ecolan P, Callennec C L. Myosin heavy chain composition of different skeletal muscles in Large White and Meishan pigs. Journal of Animal Science, 2004, 82(7): 1931-1941.

[3]De-Coppi P, Milan G, Scarda A, Boldrin L, Centobene C, Piccoli M, Pozzobon M, Pilon C, Pagano C, Gamba P, Vettor R. Rosiglitazone modifies the adipogenic potential of human muscle satellite cells. Diabetologia, 2006, 49: 1962-1973.

[4]Collins C A, Olsen I, Zammit P S, Heslop L, Petrie A, Partridge T A, Morgan J E. Stem cell function, selfrenewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 2005, 122(2): 289-301.

[5]Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M. Direct isolation of satellite cells for skeletal muscle regeneration. Science, 2005, 309(5743): 2064-2067.

[6]Zammit P S, Partridge T A, Yablonka-Reuveni Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. Journal of Histochemistry and Cytochemistry, 2006, 54: 1177-1191.

[7]Zammit P S, Golding J P, Nagata Y, Hudon V, Partridge T A, Beauchamp J R. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? Journal of Cell Biology, 2004, 166(3): 347-357.

[8]Yablonka-Reuveni Z, Day K, Vine A, Shefer G. Defining the transcriptional signature of skeletal muscle stem cells. Journal of Animal Science, 2008, 86(14): 207-216.

[9]Yang Y J, Yang J Z, Liu R X, Li H X, Luo X, Yang G S. Accumulation of -catenin by lithium chloride in porcine myoblast cultures accelerates cell differentiation. Molecular Biology Reports, 2010, 38(3): 2043-2049.

[10]Wrobel E, Brzoska E, Moraczewski J. M-cadherin and β-catenin participate in differentiation of rat satellite cells. Journal of Cell Biology, 2007, 86(2): 99-109.

[11]Tee J M, van Rooijen C V, Boonen R, Zivkovic D. Regulation of slow and fast muscle myofibrillogenesis by wnt\β-catenin and myostatin signaling. PloS One, 2009, 4(6): e5880.

[12]Wainwright B J, Scambler P J, Stanier P, Watson E K, Bell G, Wicking C, Estivill X, Courtey M, Boue A, Pedersen P S, Willianson R, Farrall M. Isolation of a human gene with protein sequence similarity to human and murine int-1 and the Drosophila segment polarity mutant wingless. The EMBO Journal, 1988, 7(6): 1743-1748.

[13]Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell, 1987, 50(4): 649-657.

[14]Logan C Y, Nusse R. The wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 2004, 20: 781-810.

[15]Matthias L. Role of wnt signalling in the determination of human mesenchymal stem cells into preadipocytes. Journal of Molecular Endocrinology, 2011, 46: R65-R72.

[16]Schneider V A, Mercola M. Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Development, 2001, 15: 304-315.

[17]Chen W, Berge D, Brown J, Ahn S, Hu L Y A, Miller W E, Caron M G, Barak L S, Nusse R, Lefkowitz R J. Dishevelled 2 recruits beta-arrestin 2 to mediate wnt5A-stimulated endocytosis of Frizzled 4. Science, 2003, 301(5638): 1391-1394.

[18]Wallingford J B, Vogeli K M, Harland R M. Regulation of convergent extension in Xenopus by wnt5a and Frizzled-8 is independent of the canonical wnt pathway. International Journal of Developmental Biology, 2001, 45: 225-227.

[19]Kanei I C, Ninomiya-Tsuji J, Tanikawa J, Nomura T, Ishitani T, Kishida S, Kokura K, Kurahashi T, Ichikawa-Iwata E, Kim Y, Matsumoto K, Ishii S. Wnt-1 signal induces phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK. Genes Development, 2004, 18: 816-829.

[20]Thorpe C J, Moon R T. Nemo-like kinase is an essential co-activator of wnt signaling during early zebrafish development. Development, 2004, 131: 2899-2909.

[21]David A H, Zhao J, Allyson M, Haldar M, Kardon G. Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for β-catenin. Genes Development, 2009, 23: 997-1013.

[22]Bernard P, Fleming A, Lacombe A, Harley V R, Eric V E. Wnt4 inhibits β-catenin/TCF signalling by redirecting β-catenin to the cell membrane. Biological Cell, 2008, 100(3): 167-177.

[23]Sethi J K, Vidal-Puig A. Wnt signalling and the control of cellular metabolism. Biochemical Journal, 2010, 427: 1-17.

[24]Semenov M V, Habas R, Macdonald B T, He X. SnapShot: noncanonical wnt signaling pathways. Cell, 2007, 131: 1378.

[25]Bogoyevitch M A, Ngoei K R, Zhao T T, Yeap Y Y, Ng D C. c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges. Biochemical and Biophysical Acta, 2010, 1804(3): 463-475.

[26]Kawano Y, Kypta R. Secreted antagonists of the wnt signalling pathway. Journal of Cell Science, 2003, 116: 2627- 2634.

[27]Zhang L, Gao X, Wen J, Ning Y H, Chen Y G. Dapper 1 antagonizes wnt signaling by promoting dishevelled degradation. Journal of Biological Chemistry, 2006, 281: 8607-8612.

[28]Lagathu C, Christodoulides C, Virtue S, Cawthorn W P, Franzin C, Kimber W A, Nora E D, Campbell M, Gomez G M, Cheyette B N R, Sethi J K. Dact1, a nutritionally regulated preadipocyte gene, controls adipogenesis by coordinating the wnt/beta-catenin signaling network. Diabetes, 2009, 58(3): 609-619.

[29]Takemaru K, Yamaguchi S, Lee Y S, Zhang Y, Carthew R W, Moon R T. Chibby, a nuclear beta/catenin-associated antagonist of the wnt/wingless pathway. Nature, 2003, 422(6934): 905-909.

[30]Horndasch M, Lienkamp S, Springer E, Schmitt A, Pavenstädt H, Walz G, Gloy J. The C/EBP homologous protein CHOP (GADD153) is an inhibitor of wnt/TCF signals. Oncogene, 2006, 25(24): 3397-3407.

[31]Nagata Y, Kobayashi H, Umeda M, Ohta N, Kawashima S, Zammit PS, Matsuda R. Sphingomyelin levels in the plasma membrane correlate with the activation state of muscle satellite cells. Journal of Histochemistry and Cytochemistry, 2006, 54(4): 375-384.

[32]Day K, Shefer G, Richardson J B, Enikolopov G, Yablonka-Reuveni Z. Nest in GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Developmental Biology, 2007, 304(1): 246-259.

[33]Halevy O, Piestun Y, Allouh M Z, Rosser BW, Rinkevich Y, Reshef R, Rozenboim I, Wleklinski-Lee M, Yablonka-Reuveni Z. Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Developmental Dynamics, 2004, 231(3): 489-502.

[34]Schultz E, Chamberlain C, McCormick K M, Mozdziak P E. Satellite cells express distinct patterns of myogenic proteins in immature skeletal muscle. Developmental Dynamics, 2006, 235(12): 3230-3239.

[35]Tajbakhsh S, Borello U, Vivarelli E, Kelly R, Papkoff J, Duprez D, Buckingham M, Cossu G. Differential activation of Myf5 and MyoD by different wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development, 1998, 125(21): 4155-4162.

[36]Parker M H, Seale P, Rudnicki M A. Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nature Reviews Genetics, 2003, 4: 497-507.

[37]Borello U, Berarducci B, Murphy P, Bajard L, Buffa V, Piccolo S, Buckingham M, Cossu G. The wnt/β-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development, 2006, 133: 3723-3732.

[38]Goichberg P, Shtutman M, Ben-Ze’ev A, Geiger B. Recruitment of beta-catenin to cadherin-mediated intercellular adhesions is involved in myogenic induction. Journal of Cell Science, 2001, 114: 1309-1319.

[39]焦泽华, 魏著英, 白春玲, 段  彪, 程  磊, 李光鹏. 大鼠肌肉卫星细胞的分离培养鉴定与诱导分化. 农业生物技术学报, 2011,19(2): 302-307.

Jiao Z H, Wei Z Y, Bai C L, Duan B, Cheng L, Li G P. Isolation, identification and differentiation of rat’s muscle satellite cell. Journal of Agricultural Biotechnology, 2011, 19(2): 302-307. (in Chinese)

[40]Peter S Z, Terence A P, Zipora Y R. The skeletal muscle satellite cell: the stem cell that came in from the cold. Journal of Histochemistry and Cytochemistry, 2006, 54(11): 1177-1191.

[41]Anakwe K, Robson L, Hadley J, Buxton, Church V, Allen S, Hartmann C, Harfe B, Nohno T, Brown A M C, Evans D J R, Francis-West P. Wnt signalling regulates myogenic differentiation in the developing avian wing. Development, 2003, 103: 3503-3514.

[42]Petropoulos H, Skerjanc I S. β-catenin is essential and sufficient for skeletal myogeness in P19 cells. Journal of Biological Chemistry, 2002, 277: 15393-15399.

[43]Mermelstein C S, Portilho D M, Mendes F A, Costa M L, Abreu J G. Wnt/beta-catenin pathway activation and myogenic differentiation are induced by cholesterol depletion. Differentiation, 2007, 75(3): 184-92.

[44]Trensz F, Haroun S, Cloutier A, Richter M V, Grenier G. A muscle resident cell population promotes fibrosis in hindlimb skeletal muscles of mdx mice through the wnt canonical pathway. American Journal of Physiology Cell Physiology, 2010, 299(5): C939-C947.

[45]Perez-Ruiz A, Ono Y, Gnocchi V F, Zimmit P S. β-catenin promotes selfrenewal of skeletal muscle satellite cells. Journal of Cell Science, 2008, 121: 1373-1382.

[46]Vertino A M, Taylor-Jones J M, Longo KA, Longo K A, Bearden E D, Lane T F, McGehee R E, MacDougald O A, Peterson C A. Wnt10b deficiency promotes coexpression of myogenic and adipogenic programs in myoblasts. Molecular Biology of the Cell, 2005, 16(4): 2039-2048.

[47]Kim C H, Neiswender H, Baik E J, Xiong W C, Mei L. β-catenin interacts with MyoD and regulates its transcription activity. Molecular and Cellular Biochemistry, 2008, 28(9): 2941-2951.

[48]Gavard J, M arthiens V, Monnet C, Lambert M, Mège R M. N-cadherin activation substitutes f or the cell contact control in cell cycle arrest and myogenic differentiation: involvement of p120 and β-catenin. Journal of Biological Chemistry, 2004, 279: 36795-36802.

[49]Brack A S, Conboy I M, Conboy M J, Shen J, Rando T A. A temporal switch from notch to wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell, 2008, 2(1): 50-59.

[50]Lynch G S, Cuffe S A, Plant D R, Gregorevic P. IGF-1 treatment improves the functional properties of fast- and slow-twitch skeletal muscle from dystrophic mice. Neuromuscular Disorders, 2001, 11(3): 260-268.

[51]Bigard X, Sanchez H, Zoll J, Mateo P, Rousseau V, Veksler V, Ventura-Clapier R. Calcineurin co-regulates contractile and metabolic components of slow muscle phenotype. Journal of Biological Chemistry, 2000, 275(26): 19653-19660.

[52]Delling U, Tureckova J, Lim H W, Windt L J D, Rotwein P, Molkentin J D. A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Molecular and Cellular Biochemistry, 2000, 20(17): 6600-6611.

[53]Antonio L S, Marta M, Giorgia P, Elisa C, Patrizia C, Terje L, Stefano S. Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proceedings of the National Academy of Sciences of the USA, 2001, 98(23): 13108-13113.

[54]杨秋梅, 史新娥, 沈清武, 刘月光, 高晓娟, 陈宗正, 杨公社.  Wnt/β-catenin信号通路相关基因及MyHCs在猪骨骼肌发育中的表达规律. 畜牧兽医学报.2011, 42 ( 12): 1686-1695.

Yang Q M, Shi X E, Shen Q W, Liu Y G, Gao X J, Chen Z Z, Yang G S.The expression pattern of Wnt/β-catenin signal pathway related genes and MyHCs during porcine skeletal muscle development.Acta Veterinariaea Zootechica Sinica, 2011, 42(12): 1686-1695. (in Chinese)

[55]Lisa M, Andrew J W, Biswajit P, Cao Y, Tyler A, Moens C B, Tapscott S J. Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation. Development, 2007, 134(18): 3371-3382.

[56]Anakwe K, Robson L, Hadley J, Buxton P, Church V, Allen S, Hartmann C, Harfe B, Nohno T, Brown A M C, Evans D J R, Francis-West P. Wnt signaling regulates myogenic differentiation in the developing avian wing. Development, 2003, 130(15): 3503-3514.

[57]Hutcheson D A, Zhao J, Merrell A, Haldar M, Kardon G. Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for β-catenin. Genes and Development, 2009, 23: 997-1013.

[58]Kikuchi A, Yamamoto H, Sato A. Selective activationmechanisms of wnt signaling pathways. Trends in Cell Biology, 2009, 19(3): 119-129.

[59]Shinichiro H, Masato M, Kouichi W, Hisashi A, Seigo H, Shyuichi O, Takahiro Y. Myostatin preferentially down- regulates the expression of fast 2x myosin heavy chain in cattle. Proceedings of the Japan Academy - Series B: Physical and Biological Sciences, 2008, 84(8): 354-362.

[60]Steelman C A, Recknor J C, Nettleton D, Reecy J M. Transcriptional profiling of myostatin- knockout mice implicates wnt signaling in postnatal skeletal muscle growth and hypertrophy. The FASEB Journal, 2006, 20(3): 580-582.
[1] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[2] LAI YuTing,ZHU FeiFei,WANG YiMin,GUO Hong,ZHANG LinLin,LI Xin,GUO YiWen,DING XiangBin. Effects of PSMB5 on the Proliferation and Myogenic Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(20): 4287-4296.
[3] LI Yan,CHEN MingMing,ZHANG JunXing,ZHANG LinLin,LI Xin,GUO Hong,DING XiangBin,LIU XinFeng. Effects of Bovine LncRNA-133a on the Proliferation and Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2019, 52(1): 143-153.
[4] LI Fang-hua,HOU Ling-ling,MA Yue-hui,PANG Quan-hai,GUAN Wei-jun
. Isolation, Culture, Identification and Muscle Differentiation of Skeletal Muscle Satellite Cells in Beijing Fatty Chicken
[J]. Scientia Agricultura Sinica, 2010, 43(22): 4725-4731 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!