Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (3): 443-451.doi: 10.3864/j.issn.0578-1752.2012.03.005

• PLANT PROTECTION • Previous Articles     Next Articles

Degradation Characteristics and Products of Cypermethrin by Cladosporium sp. HU

 CHEN  Shao-Hua, GENG  Peng, HU  Mei-Ying, LI  Ya-Nan, CHEN  Hui-Ting, CHEN  Qing-Guo   

  1. 1.华南农业大学天然农药与化学生物学教育部重点实验室,广州 510642
  • Received:2011-05-03 Online:2012-02-01 Published:2011-07-27

Abstract: 【Objective】 The objective of this study is to optimize the biodegradation conditions and analyze the degradation products from cypermethrin degradation by Cladosporium sp. HU, and to provide a basis for bioremediation of cypermethrin- contaminated environment. 【Method】 Based on the screening of pyrethroid-degrading fungal strain, Cladosporium sp. HU     (the accession number of ITS sequence analysis GenBank is HQ693526), the degradation abilities of the isolated strain under different conditions were determined with high performance liquid chromatography (HPLC). The Andrews equation was used to describe the degradation kinetics with different cypermethrin concentrations (50-500 mg•L-1). The products from cypermethrin degradation were analyzed by gas chromatopraphy-mass spectrometry (GC-MS). 【Result】 Cladosporium sp. HU utilized cypermethrin as the sole carbon for growth in the mineral salt medium (MSM). Under the conditions of aeration, inoculum amount 0.4 g•L-1, 25-30℃, pH 7.0-8.0, and shaking speed 120 r/min, Cladosporium sp. HU degraded cypermethrin rapidly with a degradation rate up to 90% within 4 d. The kinetic parameters of qmax, Ks and Ki were 1.2042 d-1, 35.2718 mg•L-1 and 439.9948 mg•L-1, respectively. And the optimal concentration of initial cypermethrin was 124.5769 mg•L-1. Cladosporium sp. HU degraded cypermethrin by hydrolysis and oxidation to produce α-hydroxy-3-phenoxy-benzeneacetonitrile, 3-phenoxybenzaldehyde, 4-phenoxyphenyl-2,2-dimethyl-propiophenone and 4-phenoxyacetophenone. 3-Phenoxybenzaldehyde and α-hydroxy-3-phenoxy- benzeneacetonitrile were the intermediates of cypermethrin degradation. 【Conclusion】 Cladosporium sp. HU participated in efficient and rapid degradation of cypermethrin, which would be in favor of fungal or enzymic preparation industrial production to deal with pyrethroid residues.

Key words: cypermethrin, Cladosporium sp. HU, degradation characteristics, degradation products

[1]Tallur P N, Megadi V B, Ninnekar H Z. Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation, 2008, 19: 77-82.

[2]Grant R J, Betts W B. Biodegradation of the synthetic pyrethroid cypermethrin in used sheep dip. Letters in Applied Microbiology, 2003, 36(3): 173-176.

[3]Saha S, Kaviraj A. Acute toxicity of synthetic pyrethroid cypermethrin to some freshwater organisms. Bulletin of Environmental Contamination and Toxicology, 2008, 80: 49-52.

[4]Wolansky M J, Harrill J A. Neurobehavioral toxicology of pyrethroid insecticides in adult animals: a critical review. Neurotoxicology and Teratology, 2008, 30: 55-78.

[5]Yuan C, Wang C, Gao S Q, Kong T T, Chen L, Li X F, Song L, Wang Y B. Effects of permethrin, cypermethrin and 3-phenoxybenzoic acid on rat sperm motility in vitro evaluated with computer-assisted sperm analysis. Toxicology in Vitro, 2010, 24: 382-386.

[6]Ansari R A, Rahman S, Kaur M, Anjum S, Raisuddin S. In vivo cytogenetic and oxidative stress-inducing effects of cypermethrin in freshwater fish, Channa punctata Bloch. Ecotoxicology and Environmental Safety, 2011, 74: 150-156.

[7]Kolaczinski J H, Curtis C F. Chronic illness as a result of low-level exposure to synthetic pyrethroid insecticides: a review of the debate. Food and Chemical Toxicology, 2004, 42(5): 697-706.

[8]Shukla Y, Yadav A, Arora A. Carcinogenic and cocarcinogenic potential of cypermethrin on mouse skin. Cancer Letters, 2002, 182: 33-41.

[9]Zhang Z Y, Liu X J, Yu X Y, Zhang C Z, Hong X Y. Pesticide residues in the spring cabbage (Brassica oleracea L. var. capitata) grown in open field. Food Control, 2007, 18: 723-730.

[10]Singh B K, Walker A. Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews, 2006, 30(3): 428-471.

[11]Grant R J, Daniell T J, Betts W B. Isolation and identification of synthetic pyrethroid-degrading bacteria. Journal of Applied Microbiology, 2002, 92: 534-540.

[12]Jilani S, Khan M A. Biodegradation of cypermethrin by pseudomonas in a batch activated sludge process. International Journal of Environmental Science and Technology, 2006, 3(4): 371-380.

[13]Lin Q S, Chen S H, Hu M Y, Rizwan-ul-Haq M, Yang L, Li H. Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. International Journal of Environmental Science and Technology, 2011, 8(1): 45-56.

[14]廖  敏, 张海军, 谢晓梅. 拟除虫菊酯类农药残留降解菌产气肠杆菌的分离、鉴定及降解特性研究. 环境科学, 2009, 30(8): 2445-2451.

Liao M, Zhang H J, Xie X M. Isolation and identification of degradation bacteria Enterobacter aerogenes for pyrethriods pesticide residues and its degradation characteristics. Environmental Science, 2009, 30(8): 2445-2451. (in Chinese)

[15]张松柏, 张德咏, 刘  勇, 罗香文, 成飞雪, 罗源华. 一株菊酯类农药降解菌的分离鉴定及其降解酶基因的克隆. 微生物学报, 2009, 49(11): 1520-1526.

Zhang S B, Zhang D Y, Liu Y, Luo X W, Cheng F X, Luo Y H. Isolation, identification and degrading gene cloning of a pyrethroids-degrading bacterium. Acta Microbiologica Sinica, 2009, 49(11): 1520-1526. (in Chinese)

[16]Chen S H, Hu Q B, Hu M Y, Luo J J, Weng Q F, Lai K P. Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresource Technology, 2011, 102(17): 8110-8116.

[17]Metwally M E S, Osman M S, Al-Rushaid R. A high-performance liquid chromatographic method for the determination of cypermethrin in vegetables and its application to kinetic studies after greenhouse treatment. Food Chemistry, 1997, 59(2): 283-290.

[18]Chen S H, Lai K P, Li Y N, Hu M Y, Zhang Y B, Zeng Y. Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Applied Microbiology and Biotechnology, 2011, 90(4): 1471-1483.

[19]Chen S H, Yang L, Hu MY, Liu J J. Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Applied Microbiology and Biotechnology, 2011, 90(2): 755-767.

[20]Chen S H, Hu M Y, Liu J J, Zhong G H, Yang L, Rizwan-ul-Haq M, Han H T. Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. Journal of Hazardous Materials, 2011, 187: 433-440.

[21]姜  和, 曾虹燕, 夏  葵, 黄  炎, 廖凯波, 陈  良. 高效复合菌群JHD降解苯酚的特性及其动力学研究. 环境科学学报, 2009, 29(6): 1184-1189.

Jiang H, Zeng H Y, Xia K, Huang Y, Liao K B, Chen L. Phenol-degradation characteristics and kinetics of mixed culture JHD with high efficiency. Acta Scientiae Circumstantiae, 2009, 29(6): 1184-1189. (in Chinese)

[22]Zheng C L, Qu B C, Wang J, Zhou J T, Wang J, Lu H. Isolation and characterization of a novel nitrobenzene-degrading bacterium  with high salinity tolerance: Micrococcus luteus. Journal of Hazardous Materials, 2009, 165: 1152-1158.

[23]李艳芳, 宋晓磊, 季  静, 刘  峰, 慕  卫. 灭线磷降解菌DS-1的分离鉴定及其降解性. 中国农业科学, 2010, 43(8): 1594-1600.

Li Y F, Song X L, Ji J, Liu F, Mu W. Identification and characterization of an ethoprophos-degrading bacteria DS-1 and its degradation characteristics. Scientia Agricultura Sinica, 2010, 43(8): 1594-1600. (in Chinese)

[24]Heidari R, Devonshire A L, Campbell B E, Dorrian S J, Oakeshott J G, Russell R J. Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Insect Biochemistry and Molecular Biology, 2005, 35: 597-609.

[25]Wang B Z, Guo P, Hang B J, Li L, He J, Li S P. Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characteization of the gene product. Applied and Environmental Microbiology, 2009, 75(17): 5496-5500.

[26]Guo P, Wang B Z, Hang B J, Li L, Ali S W, He J, Li S P. Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. International Biodeterioration & Biodegradation, 2009, 63: 1107-1112.

[27]Zhang C, Jia L, Wang S H, Qu J, Li K, Xu L, Shi Y H, Yan Y C. Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Bioresource Technology, 2010, 101: 3423-3429.
[1] FENG Chen,FENG LiangShan,LIU Qi,LI HaoRu,ZHENG JiaMing,YANG Ning,BAI Wei,ZHANG Zhe,SUN ZhanXiang. The Degradation Characteristics of Different Plastic Films and Their Effects on Maize Yield in Semi-Arid Area in Western Liaoning [J]. Scientia Agricultura Sinica, 2021, 54(9): 1869-1880.
[2] LI Hong-Ya, LI Shu-Na, WANG Shu-Xiang, WANG Quan, ZHU Bao-Cheng. Screening, Identification of Lignin-Degradating Bacillus MN-8 and Its Characteristics in Degradation of Maize Straw Lignin [J]. Scientia Agricultura Sinica, 2014, 47(2): 324-333.
[3] ZHANG Qing-fang,WANG Feng,HA Yi-ming
. Research on Irradiation Degradation and Products Characteristics of Chlorpyrifos and Cypermethrin
[J]. Scientia Agricultura Sinica, 2010, 43(5): 1041-1049 .
[4]

. The Transformation and Transport of Main Degradation Products of Atrazine in Soils - A Review
[J]. Scientia Agricultura Sinica, 2009, 42(5): 1690-1697 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!