Previous Articles Next Articles
KANG Jing-jing, YANG Yu-rong, LIANG Hong-de
[1]Mathan M M, Mathan V I. Morphology of rectal mucosa of patients with shigellosis. Reviews of Infectious Diseases, 1991, 13(Suppl4): S314-S318. [2]Jin Q, Yuan Z, Xu J, Wang Y, Shen Y, Lu W, Wang J, Liu H, Yang J, Yang F, Zhang X, Zhang J, Yang G, Wu H, Qu D, Dong J, Sun L, Xue Y, Zhao A, Gao Y, Zhu J, Kan B, Ding K, Chen S, Cheng H, Yao Z, He B, Chen R, Ma D, Qiang B, Wen Y, Hou Y, Yu J. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Research, 2002, 30(20): 4432-4441. [3]Philpott D J, Edgeworth J D, Sansonetti P J. The pathogenesis of Shigella flexneri infection: lessons from in vitro and in vivo studies. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences, 2000, 355(1397): 575-586. [4]Sansonetti P J, Arondel J, Cantey J R, Prévost M C, Huerre M. Infection of rabbit Peyer’s patches by Shigella ?exneri: effect of adhesive or invasive bacterial phenotypes on follicle-associated epithelium. Infection and Immunity, 1996, 64(7): 2752-2764. [5]Wassef J S, Keren D F, Mailloux J L. Role of M cells in initial antigen uptake and in ulcer formation in rabbit intestinal loop model of shigellosis. Infection and Immunity, 1989, 57(3): 858-863. [6]High N, Mounier J, Prévost MC, Sansonetti PJ. IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole. The EMBO Journal, 1992, 11(5): 1991-1999. [7]Zychlinsky A, Prevost M C, Sansonetti P J. Shigella flexneri induces apoptosis in infected macrophages. Nature, 1992, 358(6382): 167-169. [8]Zychlinsky A, Thirumalai K, Arondel J, Cantey J R, Aliprantis A O, Sansonetti P J. In vivo apoptosis in Shigella flexneri infections. Infection and Immunity, 1996, 64(12): 5357-5365. [9]Sansonetti P J, Phalipon A, Arondel J, Thirumalai K, Banerjee S, Akira S, Takeda K, Zychlinsky A. Caspase-1 activation of IL-1β and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity, 2000, 12(5): 581-590. [10]Le-Barillec K, Magalhaes J G., Corcuff E, Thuizat A, Sansonetti P J, Phalipon A, Di Santo J P. Roles for T and NK cells in the innate immune response to Shigella flexneri. Journal of Immunology, 2005, 175(3): 1735-1740. [11]Way S S, Borczuk A C, Dominitz R, Goldberg M B. An essential role for gamma interferon in innate resistance to Shigella flexneri infection. Infection and Immunity, 1998, 66(4): 1342-1348. [12]Monack D M, Theriot J A. Actin-based motility is sufficient for bacterial membrane protrusion formation and host cell uptake. Cellular Microbiology, 2001, 3(9): 633-647. [13]Stevens J M, Galyov E E, Stevens M P. Actin-dependent movement of bacterial pathogens. Nature Reviews Microbiology, 2006, 4(2):91-101. [14]Singer M, Sansonetti P J. IL-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of Shigella-induced colitis. Journal of Immunology, 2004, 173(6): 4197-4206. [15]Zurawski D V, Mitsuhata C, Mumy K L, McCormick B A, Maurelli A T. OspF and OspC1 are Shigella flexneri type III secretion system effectors that are required for postinvasion aspects of virulence. Infection and Immunity, 2006, 74(10): 5964-5976. [16]Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss D S, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science, 2004, 303(5663): 1532-1535. [17]Mandic-Mulec I, Weiss J, Zychlinsky A. Shigella flexneri is trapped in polymorphonuclear leukocyte vacuoles and efficiently killed. Infection and Immunity, 1997, 65(1): 110-115. [18]Fasano A, Noriega F R, Liao F M, Wang W, Levine M M. Effect of Shigella enterotoxin 1(ShET1) on rabbit intestine in vitro and in vivo. Gut, 1997, 40(4): 505-511. [19]Arbibe L, Kim D W, Batsche E, Pedron T, Mateescu B, Muchardt C, Parsot C, Sansonetti P J. An injected bacterial effector targets chromatin access for transcription factor NF-kappa B to alter transcription of host genes involved in immune responses. Nature Immunology, 2007, 8(1): 47-56. [20]Kim D W, Lenzen G, Page A L, Legrain P, Sansonetti P J, Parsot C. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(39): 14046-14051. [21]Okuda J, Toyotome T, Kataoka N, Ohno M, Abe H, Shimura Y, Seyedarabi A, Pickersgill R, Sasakawa C. Shigella effector IpaH9.8 binds to a splicing factor U2AF(35) to modulate host immune responses. Biochemical and Biophysical Research Communications, 2005, 333(2): 531-539. [22]Ménard R, Sansonetti P J, Parsot C. Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. Journal of Bacteriology, 1993, 175(18): 5899-5906. [23]Parsot C. Shigella type III secretion effectors: how, where, when, for what purposes? Current Opinion in Microbiology, 2009, 12(1): 110-116. [24]Bell J K, Mullen G E, Leifer C A, Mazzoni A, Davies D R, Segal D M. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends in Immunology, 2003, 24(10): 528-533. [25]Newman CL, Stathopoulos C. Autotransporter and two-partner secretion: delivery of large-size virulence factors by gram-negative bacterial pathogens. Critical Reviews in Microbiology, 2004, 30(4): 275-286. [26]Cornelis G R. The type III secretion injectisome. Nature Reviews. Microbiology, 2006, 4(11): 811-825. [27]Ghosh P. Process of protein transport by the type III secretion system. Microbiology and Molecular Biology Reviews, 2004, 68(4): 771-795. [28]Blocker A J, Jouihri N, Larquet E, Gounon P, Ebel F, Parsot C, Sansonetti P, Allaoui A. Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Molecular Microbiology, 2001, 39(3): 652-663. [29]Tamano K, Aizawa SI, Katayama E, Nonaka T, Imajoh-Ohmi S, Kuwae A, Nagai S, Sasakawa C. Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. The EMBO Journal, 2000, 19(15): 3876-3887. [30]Schuch R, Maurelli A T. MxiM and MxiJ, base elements of the Mxi-Spa type III secretion system of Shigella, interact with and stabilize the MxiD secretin in the cell envelope. Journal of Bacteriology, 2001, 183(24): 6991-6998. [31]Sani M, Allaoui A, Fusetti F, Oostergetel GT, Keegstra W, Boekema EJ. Structural organization of the needle complex of the type III secretion apparatus of Shigella flexneri. Micron, 2007, 38(3): 291-301. [32]West N P, Sansonetti P J, Mounier J, Exley R M, Parsot C, Guadagnini S, Prévost M C, Prochnicka-Chalufour A, Delepierre M, Tanguy M, Tang C M. Optimization of virulence functions through glucosylation of Shigella LPS. Science, 2005, 307(5713): 1313-1317. [33]Magdalena J, Hachani A, Chamekh M, Jouihri N, Gounon P, Blocker A, Allaoui A. Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins. Journal of Bacteriology, 2002, 184(13): 3433-3441. [34]Wilharm G, Dittmann S, Schmid A, Heesemann J. On the role of specific chaperones, the specific ATPase, and the proton motive force in type III secretion. International Journal of Medical Microbiology, 2007, 297(1): 27-36. [35]Sorg J A, Blaylock B, Schneewind O. Secretion signal recognition by YscN, the Yersinia type III secretion ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(44): 16490-16495. [36]Page A L, Sansonetti P J, Parsot C. Spa15 of Shigella flexneri, a third type of chaperone in the type III secretion pathway. Molecular Microbiology, 2002, 43(6): 1533-1542. [37]Veenendaal A K, Hodgkinson J L, Schwarzer L, Stabat D, Zenk S F, Blocker A J. The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Molecular Microbiology, 2007, 63(6): 1719-1730. [38]Sieling P A, Modlin R L. Toll-like receptors: mammalian “taste receptors” for a smorgasbord of microbial invaders. Current Opinion in Microbiology, 2002, 5(1): 70-75. [39]Nandakumar N S, Pugazhendhi S, Ramakrishna B S. Effects of enteropathogenic bacteria & lactobacilli on chemokine secretion & Toll like receptor gene expression in two human colonic epithelial cell lines. The Indian Journal of Medical Research, 2009, 130(2): 170-178. [40]Girardin S E, Boneca I G, Carneiro L A, Antignac A, Jéhanno M, Viala J, Tedin K, Taha M K, Labigne A, Zähringer U, Coyle A J, DiStefano P S, Bertin J, Sansonetti P J, Philpott D J. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science, 2003, 300(5625): 1584-1587. [41]Philpott D J, Yamaoka S, Israël A, Sansonetti P J. Invasive Shigella flexneri activates NF-kappa B through a lipopolysaccharide-dependent innate intracellular response and leads to IL-8 expression in epithelial cells. Journal of Immunology, 2000, 165(2): 903-914. [42]Girardin S E, Tournebize R, Mavris M, Page A L, Li X, Stark G R, Bertin J, DiStefano P S, Yaniv M, Sansonetti P J, Philpott D J. CARD4/Nod1 mediates NF-kappa B and JNK activation by invasive Shigella flexneri. EMBO Reports, 2001, 2(8): 736-742. [43]Girardin S E, Boneca I G, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott D J, Sansonetti P J. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. The Journal of Biological Chemistry, 2003, 278(11): 8869-8872. [44]Sutterwala F S, Flavell R A. NLRC4/IPAF: a CARD carrying member of the NLR family. Clinical Immunology, 2009, 130(1): 2-6. [45]Raqib R, Lindberg A A, Wretlind B, Bardhan P K, Andersson U, Andersson J. Persistence of local cytokine production in shigellosis in acute and convalescent stages. Infection and Immunity, 1995, 63(1): 289-296. [46]Fernandez M, Regnault B, Mulet C, Tanguy M, Jay P, Sansonetti P J, Pédron T. Maturation of paneth cells induces the refractory state of newborn mice to Shigella infection. Journal of Immunology, 2008, 180(7): 4924-4930. [47]Kelly P, Bajaj-Elliott M, Katubulushi M, Zulu I, Poulsom R, Feldman R A, Bevins C L, Dhaliwal W. Reduced gene expression of intestinal α-defensins predicts diarrhea in a cohort of African adults. The Journal of Infectious Diseases, 2006, 193(10): 1464-1470. [48]Sperandio B, Regnault B, Guo J, Zhang Z, Jr Stanley S L , Sansonetti P J, Pédron T. Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. The Journal of Experimental Medicine, 2008, 205(5): 1121-1132. [49]Islam D, Bandholtz L, Nilsson J, Wigzell H, Christensson B, Agerberth B, Gudmundsson G. Downregulation of bactericidal peptides in enteric infections: A novel immune escape mechanism with bacterial DNA as a potential regulator. Nature Medicine, 2001, 7(2): 180-185. [50]Sansonetti P J, Arondel J, Cavaillon J M, Huerre M. Role of interleukin-1 in the pathogenesis of experimental shigellosis. The Journal of Clinical Investigation, 1995, 96(2): 884-892. [51]Jeong K I, Zhang Q, Nunnari J, Tzipori S. A piglet model of acute gastroenteritis induced by Shigella dysenteriae Type 1. The Journal of Infectious Diseases, 2010, 201(6): 903-911. [52]成令忠, 钟翠平, 蔡文琴. 现代组织学. 上海: 上海科学技术文献出版社, 2003: 799. Cheng L Z, Zhong C P, Cai W Q. Contemporary Histology. Shanghai: Shanghai Scientific and Technological Literature Publishing House, 2003: 799. ( in Chinese) |
[1] | GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960. |
[2] | GuangZhi ZHANG,MingYan WANG,Yi LUO,ShiHang XU,ShunDong HE,ShangJin CUI. The Zoonotic Bacterium-Helicobacter suis and Its Research Progress [J]. Scientia Agricultura Sinica, 2020, 53(6): 1278-1286. |
[3] | YongFeng WU, Xin HU, DeChao REN, Ping SHI, SongCai YOU. Reduction of Plant Height in Winter Wheat and Its Relationship with Grain Yield Under Late Frost Stress [J]. Scientia Agricultura Sinica, 2018, 51(18): 3470-3485. |
[4] | WU HuiJuan, LIU Yan, WANG XiFeng. Correlational Analyses Between Dwarfing of Plant Height Induced by Wheat dwarf virus (WDV) Infection and Gibberellin Metabolism [J]. Scientia Agricultura Sinica, 2017, 50(17): 3337-3343. |
[5] | TIAN Yi, ZHANG Cai-xia, KANG Guo-dong, LI Wu-xing, ZHANG Li-yi, CONG Pei-hua. Progress on TGA Transcription Factors in Plant [J]. Scientia Agricultura Sinica, 2016, 49(4): 632-642. |
[6] | TIAN Zhao-feng, LIU Wei-cheng, HOU Ling-yu, XIE Hua, LUO Chen, CHAI Min. Analysis of Resistance of Different Tomato Varieties to Tomato yellow leaf curl virus in Tomato [J]. Scientia Agricultura Sinica, 2016, 49(14): 2850-2856. |
[7] | WU Yong-feng, HU Xin, ZHONG Xiu-li, Lü Guo-hua, REN De-chao, SONG Ji-qing. Study on Spatial Differences of Late Frost Injury to Winter Wheat and Its Reasons at Field Scale [J]. Scientia Agricultura Sinica, 2014, 47(21): 4246-4256. |
[8] | LI Xiao-Ying, GAO Lin, ZHANG Yan-Jun, WANG Hai-Yan, LIU Da-Qun. Expression and Analysis of β-1, 3-Glucanase Gene in Wheat TcLr35 Induced by Wheat Leaf Rust Pathogen and Signal Molecule [J]. Scientia Agricultura Sinica, 2014, 47(14): 2774-2783. |
[9] | GUAN Ming-Li, DOU Shi-Juan, LI Xue-Jiao, JIA Lin, SHI Jia-Nan, ZENG Xiang-Ran, JIA Meng, GUO Mei-Cen, LIU Li-Juan, LI Li-Yun, LIU Guo-Zhen. Expression of Pathogenesis-Related Proteins in the Interactions Between Rice and Xanthomonas oryzae pv. oryzae [J]. Scientia Agricultura Sinica, 2013, 46(20): 4179-4188. |
[10] | WAN Hua-Fang, LIU , YAO , MEI Jia-Qin, DING Yi-Juan, LIANG , YING , QU Cun-Min, LU , KUN , LI Jia-Na, QIAN , WEI . Relationship Between the Expression of Genes Encoding Resistance-related Enzymes and the Resistance to Sclerotinia sclerotiorum in Resynthesized Brassica napus with High Level of Resistance [J]. Scientia Agricultura Sinica, 2012, 45(22): 4543-4551. |
[11] |
WEN Chang-long,ZHAO Bing,DU Jian-cai,YAMADA Toshihiko,GUO Yang-dong . Advances in Research of Festulolium Intergeneric Hybrids [J]. Scientia Agricultura Sinica, 2010, 43(7): 1346-1354 . |
[12] |
XUE Gao-feng,SUN Wan-chun,SONG A-lin,LI Zhao-jun,FAN Fen-liang,LIANG Yong-chao.
Influence of Silicon on Rice Growth, Resistance to Bacterial Blight and Activity of Pathogenesis-Related Proteins [J]. Scientia Agricultura Sinica, 2010, 43(4): 690-697 . |
[13] |
LUO Qi-hua,ZHOU Ting,WANG Qiang,DAI Ping-li,WU Yan-yan . Advances in Research on Classification and Major Species of Bee Mites [J]. Scientia Agricultura Sinica, 2010, 43(3): 585-593 . |
[14] |
LIU Hong-xia,ZHAO Xin,BI Yang,ZHANG Zeng-yan,CHEN Bai-hong,AN Cheng-cai . A Proteomic Approach to Study Defense-Related Proteins Responses to GSH Treatment in Pea (Pisum sativum) |
[15] |
WANG Hua,ZHAO Xian-hua,LIU Jing,FU Rui-peng . Research Progress in Sustainable Development of Grape and Wine Production [J]. Scientia Agricultura Sinica, 2010, 43(15): 3204-3213 . |
|