| [1] |
ZHAO C, LIU B, PIAO S L, WANG X H, LOBELL D B, HUANG Y, HUANG M T, YAO Y T, BASSU S, CIAIS P, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35): 9326-9331.
|
| [2] |
ADEKANMBI T, WANG X Q, BASHEER S, LIU S Q, YANG A L, CHENG H Y. Climate change impacts on global potato yields: A review. Environmental Research: Climate, 2024, 3(1): 012001.
|
| [3] |
DING N, ZHANG B L. microRNA production in Arabidopsis. Frontiers in Plant Science, 2023, 14: 1096772.
|
| [4] |
苏小雨, 谭政委, 李春明, 李磊, 鲁丹丹, 余永亮, 董薇, 安素妨, 杨青, 孙瑶, 等. 高温胁迫下芝麻全基因组甲基化差异及关联基因表达分析. 中国农业科学, 2024, 57(24): 4825-4838. doi: 10.3864/j.issn.0578-1752.2024.24.001.
|
|
SU X Y, TAN Z W, LI C M, LI L, LU D D, YU Y L, DONG W, AN S F, YANG Q, SUN Y, et al. Analysis of genome-wide methylation differences and associated gene expression of sesame varieties under high temperature stress. Scientia Agricultura Sinica, 2024, 57(24): 4825-4838. doi: 10.3864/j.issn.0578-1752.2024.24.001. (in Chinese)
|
| [5] |
ZHANG Y Y, ZHOU Y, ZHU W M, LIU J Z, CHENG F. Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance. Frontiers in Plant Science, 2022, 13: 965745.
|
| [6] |
STIEF A, ALTMANN S, HOFFMANN K, PANT B D, SCHEIBLE W R, BÄURLE I. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. The Plant Cell, 2014, 26(4): 1792-1807.
|
| [7] |
ÖZTÜRK GÖKÇE Z N, AKSOY E, BAKHSH A, DEMIREL U, ÇALIŞKAN S, ÇALIŞKAN M E. Combined drought and heat stresses trigger different sets of miRNAs in contrasting potato cultivars. Functional & Integrative Genomics, 2021, 21(3): 489-502.
|
| [8] |
HE M, LIU J, TAN J, JIAN Y Q, LIU J G, DUAN Y F, LI G C, JIN L P, XU J F. A comprehensive interaction network constructed using miRNAs and mRNAs provides new insights into potato tuberization under high temperatures. Plants, 2024, 13(7): 998.
|
| [9] |
ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1): 139-140.
|
| [10] |
YAN T, YOO D, BERARDINI T Z, MUELLER L A, WEEMS D C, WENG S, CHERRY J M, RHEE S Y. PatMatch: A program for finding patterns in peptide and nucleotide sequences. Nucleic Acids Research, 2005, 33(suppl_2): W262-W266.
|
| [11] |
KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12(4): 357-360.
|
| [12] |
LI B, DEWEY C N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011, 12: 323.
|
| [13] |
GAO W W, LI M K, CHENG H P, XIA K F, ZHANG M Y. The miR5810/OsMRLP6 regulatory module affects rice seedling photosynthesis. The Crop Journal, 2023, 11(6): 1686-1695.
|
| [14] |
ZHANG G D, TANG R M, NIU S Y, SI H J, YANG Q, RAJORA O P, LI X Q. Heat-stress-induced sprouting and differential gene expression in growing potato tubers: Comparative transcriptomics with that induced by postharvest sprouting. Horticulture Research, 2021, 8(1): 226.
|
| [15] |
MUTHONI J, KABIRA J N. Potato production in the hot tropical areas of Africa: Progress made in breeding for heat tolerance. Journal of Agricultural Science, 2015, 7(9): 220-227.
|
| [16] |
LI Y, HE Y Z, QIN T, GUO X L, XU K, XU C X, YUAN W Y. Functional conservation and divergence of miR156 and miR529 during rice development. The Crop Journal, 2023, 11(3): 692-703.
|
| [17] |
YU N, NIU Q W, NG K H, CHUA N H. The role of miR156/SPLs modules in Arabidopsis lateral root development. The Plant Journal, 2015, 83(4): 673-685.
|
| [18] |
XU M L, HU T Q, ZHAO J F, PARK M Y, EARLEY K W, WU G, YANG L, POETHIG R S. Developmental functions of miR156-regulated Squamosa promoter binding protein-like (spl) genes in Arabidopsis thaliana. PLoS Genetics, 2016, 12(8): e1006263.
|
| [19] |
YUAN J, WANG X, QU S T, SHEN T, LI M J, ZHU L C. The roles of miR156 in abiotic and biotic stresses in plants. Plant Physiology and Biochemistry, 2023, 204: 108150.
|
| [20] |
MATTHEWS C, ARSHAD M, HANNOUFA A. Alfalfa response to heat stress is modulated by microRNA156. Physiologia Plantarum, 2019, 165(4): 830-842.
|
| [21] |
XIE Y R, ZHOU Q, ZHAO Y P, LI Q Q, LIU Y, MA M D, WANG B B, SHEN R X, ZHENG Z G, WANG H Y. FHY3 and FAR1 integrate light signals with the miR156-SPL module-mediated aging pathway to regulate Arabidopsis Flowering. Molecular Plant, 2020, 13(3): 483-498.
|
| [22] |
WANG H, ZHU S Y, YANG C, ZENG D Y, LUO C F, DAI C H, CHENG D Y, LV X H. Expression and functional identification of SPL6/7/9 genes under drought stress in sugarbeet seedlings. International Journal of Molecular Sciences, 2024, 25(16): 8989.
|
| [23] |
LUO H Y, YANG J W, LIU S Y, LI S G, SI H J, ZHANG N. Control of plant height and lateral root development via stu-miR156 regulation of SPL9 transcription factor in potato. Plants, 2024, 13(5): 723.
|
| [24] |
CHAO L M, LIU Y Q, CHEN D Y, XUE X Y, MAO Y B, CHEN X Y. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage. Molecular Plant, 2017, 10(5): 735-748.
|
| [25] |
GREER S, WEN M, BIRD D, WU X M, SAMUELS L, KUNST L, JETTER R. The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiology, 2007, 145(3): 653-667.
|
| [26] |
NEGIN B, HEN-AVIVI S, ALMEKIAS-SIEGL E, SHACHAR L, JANDER G, AHARONI A. Tree tobacco (Nicotiana glauca) cuticular wax composition is essential for leaf retention during drought, facilitating a speedy recovery following rewatering. New Phytologist, 2023, 237(5): 1574-1589.
|
| [27] |
HE X J, HSU Y F, PONTES O, ZHU J H, LU J, BRESSAN R A, PIKAARD C, WANG C S, ZHU J K. NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation. Genes & Development, 2009, 23(3): 318-330.
|
| [28] |
DUTTA M, RATURI V, GAHLAUT V, KUMAR A, SHARMA P, VERMA V, GUPTA V K, SOOD S, ZINTA G. The interplay of DNA methyltransferases and demethylases with tuberization genes in potato (Solanum tuberosum L.) genotypes under high temperature. Frontiers in Plant Science, 2022, 13: 933740.
|
| [29] |
任茂, 李博, 徐延浩, 张文英. 高温胁迫诱导棉花甲基化变化分析. 分子植物育种, 2017, 15(3): 1069-1076.
|
|
REN M, LI B, XU Y H, ZHANG W Y. Methylation-sensitive amplified polymorphism analysis of epigenetic changes in cotton (Gossypium hirsutum L.) under heat stress. Molecular Plant Breeding, 2017, 15(3): 1069-1076. (in Chinese)
|
| [30] |
宋爽, 刘宇, 高琪, 赵爽, 王守现, 宋庆港. 高温胁迫下香菇基因组甲基化差异分析. 中国食用菌, 2019, 38(10): 9-11, 16.
|
|
SONG S, LIU Y, GAO Q, ZHAO S, WANG S X, SONG Q G. Analysis of genomic DNA methylation of Lentinula edodes under heat stress. Edible Fungi of China, 2019, 38(10): 9-11, 16. (in Chinese)
|