中国农业科学 ›› 2025, Vol. 58 ›› Issue (14): 2885-2903.doi: 10.3864/j.issn.0578-1752.2025.14.013

• 食品科学与工程 • 上一篇    下一篇

基于WGCNA的稻谷储藏期间差异基因挖掘与品质调控网络构建

董雪(), 陈梦秋, 邵晋, 吴学友, 唐培安*()   

  1. 南京财经大学食品科学与工程学院/江苏省现代粮食流通与安全协同创新中心/江苏高校粮油质量安全控制及深加工重点实验室,南京 210023
  • 收稿日期:2024-11-06 接受日期:2025-04-21 出版日期:2025-07-17 发布日期:2025-07-17
  • 通信作者:
    唐培安,E-mail:
  • 联系方式: 董雪,E-mail:xue_dong1990@126.com。
  • 基金资助:
    国家重点研发计划(2023YFD1701203); 国家自然科学基金(32302171); 江苏高校优势学科建设工程资助项目(YXK2103)

Construction of a Differential Gene Expression and Quality Regulation Network in Stored Rice Grain Using WGCNA

DONG Xue(), CHEN MengQiu, SHAO Jin, WU XueYou, TANG PeiAn*()   

  1. College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing/Jiangsu Modern Grain Circulation and Safety Collaborative Innovation Center/Key Laboratory for Quality Safety Control and Deep Processing of Cereals and Oils, Nanjing 210023
  • Received:2024-11-06 Accepted:2025-04-21 Published:2025-07-17 Online:2025-07-17

摘要:

【背景】稻谷在长期储藏过程中经历复杂的生理和生化变化,这些变化不仅影响其储藏稳定性,还直接决定其最终的品质。储藏过程中,脂肪氧化、淀粉降解、蛋白质变化、膜稳态失衡及氧化胁迫等因素共同导致稻谷品质劣变。然而,稻谷储藏期间的分子机制尚不明确。【目的】本研究旨在通过WGCNA分析稻谷储藏期间的差异基因(DEGs),构建共表达网络,识别与稻谷储藏过程中品质变化密切相关的核心基因,并探讨其潜在调控机制,揭示稻谷储藏稳定性的关键分子基础。【方法】选取粳稻品种(南粳46号),分别在0、3、6、9和12个月的储藏时间点采样,并对样本进行转录组测序以获取基因表达数据。利用WGCNA分析筛选储藏期间差异较大的基因,构建加权基因共表达网络,并识别与储藏时间显著相关的特异性模块。基于网络连通性分析筛选核心基因,并结合富集分析、生理生化指标测定,以探索核心基因的功能。【结果】从基因表达谱中筛选出9 050个DEGs,其中8 654个基因在储藏不同阶段差异表达,396个为各储藏阶段共有的DEGs。WGCNA识别到17个基因共表达模块,进一步筛选出4个与稻谷储藏过程密切相关的特异性模块。网络连通性分析进一步挖掘出具有调控潜力的核心基因,包括参与脂质代谢的OsOLE4、OsCDAP3,维护细胞稳态的OsLEA32、OsAGP24、OsRHD3,乙烯信号通路调控基因OsERF064,以及控制表观遗传的OsEMF2a以及缺乏功能注释的5个候选基因。【结论】本研究基于转录组学和WGCNA技术,系统解析了稻谷储藏过程中的分子调控网络,表明稻谷通过多层次基因调控机制适应储藏环境。特定模块中的核心基因在抗氧化、营养代谢、膜稳态和细胞功能维持等方面发挥关键作用。

关键词: 稻谷, 储藏品质, 转录组测序, 加权基因共表达网络分析, 核心基因

Abstract:

【Background】Rice grain undergoes various physiological and biochemical changes during long-term storage, impacting both stability and quality. Those factors contribute to rice grain quality deterioration during its storage stage, such as lipid oxidation, starch degradation, protein modifications, membrane homeostasis imbalance, and oxidative stress collectively. However, the molecular mechanisms underlying these changes remain elusive.【Objective】This study aimed to analyze differentially expressed genes (DEGs) in stored rice grian, construct a co-expression network, identify core genes using WGCNA and explore regulatory mechanisms associated with rice storage stability. 【Method】Transcriptomic analysis was conducted on Japonica rice (Nanjing 46) grain stored for different durations (0, 3, 6, 9 and 12 months) to obtain gene expression profiles. WGCNA was employed to identify highly variable genes during storage, construct a weighted gene co-expression network, and identify storage-time-specific modules. Core genes screening was based on network connectivity, followed by functional enrichment analysis and physiological and biochemical assays to explore their potential roles in storage quality regulation.【Result】A total of 9 050 DEGs were identified, with 8 654 showing variations across storage stages, and 396 were expressed consistently across all time points. WGCNA identified 17 gene co-expression modules, of which four showed strong associations with storage duration. Connectivity analysis further highlighted key genes with regulatory potential:OsOLE4 and OsCDAP3, involved in lipid metabolism; OsLEA32, OsAGP24 and OsRHD3 associated with maintaining cellular stability; OsERF064 linked to the ethylene signaling pathway and OsEMF2a, an epigenetic regulator. Additionally, five candidate genes lacking functional annotation were identified for further study.【Conclusion】This study systematically analyzed the molecular regulatory network of rice grain storage using transcriptomics and WGCNA, revealing that rice grain adapts to storage environments through multi-level gene regulatory mechanisms. Core genes within specific modules played pivotal roles in antioxidant activity, nutrient metabolism, membrane stability, and cellular function maintenance. These findings provided a biological basis for delaying rice quality deterioration and offered potential genetic resources for improving rice grain storage stability.

Key words: rice grain (Oryza sativa), quality preservation, transcriptome sequencing, Weighted Gene Co-Expression Network Analysis (WGCNA), core genes