[1] |
ABADASSI J. Maize agronomic traits needed in tropical zone. International Journal of Science, Environment and Technology, 2015, 4(2): 371-392.
|
[2] |
WIDSTROM N W, BUTRON A, GUO B Z, WILSON D M, SNOOK M E, CLEVELAND T E, LYNCH R E. Control of preharvest aflatoxin contamination in maize by pyramiding QTL involved in resistance to ear-feeding insects and invasion by Aspergillus spp. European Journal of Agronomy, 2003, 19(4): 563-572.
|
[3] |
|
|
WANG K R, LI S K. Analysis of influencing factors on kernel dehydration rate of maize hybrids. Scientia Agricultura Sinica, 2017, 50(11): 2027-2035. doi: 10.3864/j.issn.0578-1752.2017.11.008. (in Chinese)
|
[4] |
ZHOU G F, HAO D R, CHEN G Q, LU H H, SHI M L, MAO Y X, ZHANG Z L, HUANG X L, XUE L. Genome-wide association study of the husk number and weight in maize (Zea mays L.). Euphytica, 2016, 210(2): 195-205.
|
[5] |
CUI Z H, LUO J H, QI C Y, RUAN Y Y, LI J, ZHANG A, YANG X H, HE Y. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genomics, 2016, 17(1): 946.
pmid: 27871222
|
[6] |
CUI Z H, DONG H X, ZHANG A, RUAN Y Y, JIANG S Q, HE Y, ZHANG Z W. Denser markers and advanced statistical method identified more genetic loci associated with husk traits in maize. Scientific Reports, 2020, 10(1): 8165.
doi: 10.1038/s41598-020-65164-0
pmid: 32424146
|
[7] |
ZHOU G F, MAO Y X, XUE L, CHEN G Q, LU H H, SHI M L, ZHANG Z L, HUANG X L, SONG X D, HAO D R. Genetic dissection of husk number and length across multiple environments and fine-mapping of a major-effect QTL for husk number in maize (Zea mays L.). The Crop Journal, 2020, 8(6): 1071-1080.
|
[8] |
ZHANG X L, LU M, XIA A A, XU T, CUI Z H, ZHANG R Y, LIU W G, HE Y. Genetic analysis of three maize husk traits by QTL mapping in a maize-teosinte population. BMC Genomics, 2021, 22(1): 386.
doi: 10.1186/s12864-021-07723-x
pmid: 34034669
|
[9] |
ZHANG J, ZHANG F Q, TIAN L, DING Y, QI J S, ZHANG H F, MU X Y, MA Z Y, XIA L K, TANG B J. Molecular mapping of quantitative trait loci for 3 husk traits using genotyping by sequencing in maize (Zea mays L.). G3, 2022, 12(10): jkac198.
|
[10] |
朱秋丽, 张舒钰, 章慧敏, 宋旭东, 张振良, 陆虎华, 陈国清, 郝德荣, 冒宇翔, 石明亮, 薛林, 周广飞. 玉米果穗苞叶包裹度的QTL分析. 农业生物技术学报, 2023, 31(11): 2231-2238.
|
|
ZHU Q L, ZHANG S Y, ZHANG H M, SONG X D, ZHANG Z L, LU H H, CHEN G Q, HAO D R, MAO Y X, SHI M L, XUE L, ZHOU G F. QTL analysis of husk coverage on maize (Zea mays) ear. Journal of Agricultural Biotechnology, 2023, 31(11): 2231-2238. (in Chinese)
|
[11] |
XIA A A, ZHENG L M, WANG Z, WANG Q, LU M, CUI Z H, HE Y. The RHW1-ZCN4 regulatory pathway confers natural variation of husk leaf width in maize. The New Phytologist, 2023, 239(6): 2367-2381.
|
[12] |
WANG Z, XIA A A, WANG Q, CUI Z H, LU M, YE Y S, WANG Y B, HE Y. Natural polymorphisms in ZMET2 encoding a DNA methyltransferase modulate the number of husk layers in maize. Plant Physiology, 2024, 195(3): 2129-2142.
|
[13] |
ZHOU G F, ZHU Q L, MAO Y X, CHEN G Q, XUE L, LU H H, SHI M L, ZHANG Z L, SONG X D, ZHANG H M, HAO D R. Multi-locus genome-wide association study and genomic selection of kernel moisture content at the harvest stage in maize. Frontiers in Plant Science, 2021, 12: 697688.
|
[14] |
KNAPP S J, STROUP W W, ROSS W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Science, 1985, 25(1): 192-194.
|
[15] |
WANG S B, FENG J Y, REN W L, HUANG B, ZHOU L, WEN Y J, ZHANG J, DUNWELL J M, XU S Z, ZHANG Y M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Scientific Reports, 2016, 6: 19444.
|
[16] |
ZHANG Y L, LIU P, ZHANG X X, ZHENG Q, CHEN M, GE F, LI Z L, SUN W T, GUAN Z R, LIANG T H, ZHENG Y, TAN X L, ZOU C Y, PENG H W, PAN G T, SHEN Y O. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance-related traits in maize. Frontiers in Plant Science, 2018, 9: 611.
doi: 10.3389/fpls.2018.00611
pmid: 29868068
|
[17] |
AN Y X, CHEN L, LI Y X, LI C H, SHI Y S, ZHANG D F, LI Y, WANG T Y. Genome-wide association studies and whole-genome prediction reveal the genetic architecture of KRN in maize. BMC Plant Biology, 2020, 20(1): 490.
doi: 10.1186/s12870-020-02676-x
pmid: 33109077
|
[18] |
CUI Z H, XIA A A, ZHANG A, LUO J H, YANG X H, ZHANG L J, RUAN Y Y, HE Y. Linkage mapping combined with association analysis reveals QTL and candidate genes for three husk traits in maize. Theoretical and Applied Genetics, 2018, 131(10): 2131-2144.
doi: 10.1007/s00122-018-3142-2
pmid: 30043259
|
[19] |
LIU L, DU Y F, SHEN X M, LI M F, SUN W, HUANG J, LIU Z J, TAO Y S, ZHENG Y L, YAN J B, ZHANG Z X. KRN4 controls quantitative variation in maize kernel row number. PLoS Genetics, 2015, 11(11): e1005670.
|
[20] |
CHEN W K, CHEN L, ZHANG X, YANG N, GUO J H, WANG M, JI S H, ZHAO X Y, YIN P F, CAI L C, XU J, ZHANG L L, HAN Y J, XIAO Y N, XU G, WANG Y B, WANG S H, WU S, YANG F, JACKSON D, CHENG J K, CHEN S H, SUN C Q, QIN F, TIAN F, FERNIE A R, LI J S, YAN J B, YANG X H. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375(6587): eabg7985.
|
[21] |
JIA H T, LI M F, LI W Y, LIU L, JIAN Y N, YANG Z X, SHEN X M, NING Q, DU Y F, ZHAO R, JACKSON D, YANG X H, ZHANG Z X. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nature Communications, 2020, 11(1): 988.
|
[22] |
NING Q, JIAN Y N, DU Y F, LI Y F, SHEN X M, JIA H T, ZHAO R, ZHAN J M, YANG F, JACKSON D, LIU L, ZHANG Z X. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nature Communications, 2021, 12(1): 5832.
doi: 10.1038/s41467-021-26123-z
pmid: 34611160
|
[23] |
ZHANG Y M, JIA Z Y, DUNWELL J M. Editorial: The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Frontiers in Plant Science, 2003, 14: 1340767.
|
[24] |
WANG B B, HOU M, SHI J P, KU L X, SONG W, LI C H, NING Q, LI X, LI C Y, ZHAO B B, ZHANG R Y, XU H, BAI Z J, XIA Z C, WANG H, KONG D X, WEI H B, JING Y F, DAI Z Y, WANG H H, ZHU X Y, LI C H, SUN X, WANG S S, YAO W, HOU G G, QI Z, DAI H, LI X M, ZHENG H K, ZHANG Z X, LI Y, WANG T Y, JIANG T J, WAN Z M, CHEN Y H, ZHAO J R, LAI J S, WANG H Y. De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nature Genetics, 2023, 55(2): 312-323.
doi: 10.1038/s41588-022-01283-w
pmid: 36646891
|
[25] |
田爱梅, 于晖, 曹家树. 植物E3泛素连接酶的分类与功能. 中国细胞生物学学报, 2020, 42(5): 907-915.
|
|
TIAN A M, YU H, CAO J S. Classification and function of E3 ubiquitin ligase in plants. Chinese Journal of Cell Biology, 2020, 42(5): 907-915. (in Chinese)
|
[26] |
LUO H L, LALUK K, LAI Z B, VERONESE P, SONG F M, MENGISTE T. The Arabidopsis botrytis Susceptible1 Interactor defines a subclass of RING E3 ligases that regulate pathogen and stress responses. Plant Physiology, 2010, 154(4): 1766-1782.
|
[27] |
SONG X J, HUANG W, SHI M, ZHU M Z, LIN H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39(5): 623-630.
|
[28] |
ZENDA T, LIU S T, WANG X, LIU G, JIN H Y, DONG A Y, YANG Y T, DUAN H J. Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines. International Journal of Molecular Sciences, 2019, 20(6): 1268.
|
[29] |
RIDA S, MAAFI O, LÓPEZ-MALVAR A, REVILLA P, RIACHE M, DJEMEL A. Genetics of germination and seedling traits under drought stress in a MAGIC population of maize. Plants, 2021, 10(9): 1786.
|
[30] |
|
|
DUAN C X, WANG X M, SONG F J, SUN S L, ZHOU D N, ZHU Z D. Advances in research on maize resistance to ear rot. Scientia Agricultura Sinica, 2015, 48(11): 2152-2164. doi: 10.3864/j.issn.0578-1752.2015.11.007. (in Chinese)
|
[31] |
MARTIN M, MIEDANER T, DHILLON B S, UFERMANN U, KESSEL B, OUZUNOVA M, SCHIPPRACK W, MELCHINGER A E. Colocalization of QTL for Gibberella ear rot resistance and low mycotoxin contamination in early European maize. Crop Science, 2011, 51(5): 1935-1945.
|
[32] |
WEN J, SHEN Y Q, XING Y X, WANG Z Y, HAN S P, LI S J, YANG C M, HAO D Y, ZHANG Y. QTL mapping of resistance to Gibberella ear rot in maize. Molecular Breeding, 2020, 40(10): 94.
|
[33] |
CURABA J, HERZOG M, VACHON G. GeBP, the first member of a new gene family in Arabidopsis, encodes a nuclear protein with DNA-binding activity and is regulated by KNAT1. The Plant Journal: for Cell and Molecular Biology, 2003, 33(2): 305-317.
|
[34] |
CHEVALIER F, PERAZZA D, LAPORTE F, LE HÉNANFF G, HORNITSCHEK P, BONNEVILLE J M, HERZOG M, VACHON G. GeBP and GeBP-like proteins are noncanonical leucine-zipper transcription factors that regulate cytokinin response in Arabidopsis. Plant Physiology, 2008, 146(3): 1142-1154.
|
[35] |
LUO Y, ZHANG M L, LIU Y, LIU J, LI W Q, CHEN G S, PENG Y, JIN M, WEI W J, JIAN L M, YAN J, FERNIE A R, YAN J B. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. The New Phytologist, 2022, 234(2): 513-526.
|