[1] |
CHRISTOPHE O S, GRELET C, BERTOZZI C, VESELKO D, LECOMTE C, HÖECKELS P, WERNER A, AUER F J, GENGLER N, DEHARENG F, SOYEURT H. Multiple breeds and countries’ predictions of mineral contents in milk from milk mid-infrared spectrometry. Foods, 2021, 10(9): 2235.
|
[2] |
BERNAL A, ZAFRA M A, SIMÓN M J, MAHÍA J. Sodium homeostasis, a balance necessary for life. Nutrients, 2023, 15(2): 395.
|
[3] |
FIORENTINI D, CAPPADONE C, FARRUGGIA G, PRATA C. Magnesium: Biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency. Nutrients, 2021, 13(4): 1136.
|
[4] |
MCLEAN R M, WANG N X. Potassium. Advances in Food and Nutrition Research. Amsterdam: Elsevier, 2021: 89-121.
|
[5] |
VISENTIN G, PENASA M, GOTTARDO P, CASSANDRO M, DE MARCHI M. Predictive ability of mid-infrared spectroscopy for major mineral composition and coagulation traits of bovine milk by using the uninformative variable selection algorithm. Journal of Dairy Science, 2016, 99(10): 8137-8145.
doi: S0022-0302(16)30524-0
pmid: 27522421
|
[6] |
QAYYUM A, KHAN J, HUSSAIN R, AVAIS M, AHMAD N, KHAN M S. Investigation of milk and blood serum biochemical profile as an indicator of sub-clinical mastitis in cholistani cattle. Pakistan Veterinary Journal, 2016, 36: 275-279.
|
[7] |
NORBERG E. Electrical conductivity of milk as a phenotypic and genetic indicator of bovine mastitis: A review. Livestock Production Science, 2005, 96: 129-139.
|
[8] |
COPPA M, REVELLO-CHION A, GIACCONE D, FERLAY A, TABACCO E, BORREANI G. Comparison of near and medium infrared spectroscopy to predict fatty acid composition on fresh andthawed milk. Food Chemistry, 2014, 150: 49-57.
|
[9] |
AKHGAR C K, NÜRNBERGER V, NADVORNIK M, VELIK M, SCHWAIGHOFER A, ROSENBERG E, LENDL B. Fatty acid prediction in bovine milk by attenuated total reflection infrared spectroscopy after solvent-free lipid separation. Foods, 2021, 10(5): 1054.
|
[10] |
SOYEURT H, GRELET C, MCPARLAND S, CALMELS M, COFFEY M, TEDDE A, DELHEZ P, DEHARENG F, GENGLER N. A comparison of 4 different machine learning algorithms to predict lactoferrin content in bovine milk from mid-infrared spectra. Journal of Dairy Science, 2020, 103(12): 11585-11596.
doi: 10.3168/jds.2020-18870
pmid: 33222859
|
[11] |
BONFATTI V, CECCHINATO A, CARNIER P. Short communication: predictive ability of Fourier-transform mid-infrared spectroscopy to assess CSN genotypes and detailed protein composition of buffalo milk. Journal of Dairy Science, 2015, 98(9): 6583-6587.
doi: 10.3168/jds.2015-9730
pmid: 26188571
|
[12] |
FRIZZARIN M, GORMLEY I C, BERRY D P, MURPHY T B, CASA A, LYNCH A, MCPARLAND S. Predicting cow milk quality traits from routinely available milk spectra using statistical machine learning methods. Journal of Dairy Science, 2021, 104(7): 7438-7447.
doi: 10.3168/jds.2020-19576
pmid: 33865578
|
[13] |
COPPA M, VANLIERDE A, BOUCHON M, JURQUET J, MUSATI M, DEHARENG F, MARTIN C. Methodological guidelines: Cow milk mid-infrared spectra to predict reference enteric methane data collected by an automated head-chamber system. Journal of Dairy Science, 2022, 105(11): 9271-9285.
|
[14] |
SHADPOUR S, CHUD T C S, HAILEMARIAM D, PLASTOW G, OLIVEIRA H R, STOTHARD P, LASSEN J, MIGLIOR F, BAES C F, TULPAN D, SCHENKEL F S. Predicting methane emission in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. Journal of Dairy Science, 2022, 105(10): 8272-8285.
doi: 10.3168/jds.2021-21176
pmid: 36055858
|
[15] |
HO P N, LUKE T D W, PRYCE J E. Validation of milk mid-infrared spectroscopy for predicting the metabolic status of lactating dairy cows in Australia. Journal of Dairy Science, 2021, 104(4): 4467-4477.
doi: 10.3168/jds.2020-19603
pmid: 33551158
|
[16] |
LUKE T D W, ROCHFORT S, WALES W J, BONFATTI V, MARETT L, PRYCE J E. Metabolic profiling of early-lactation dairy cows using milk mid-infrared spectra. Journal of Dairy Science, 2019, 102(2): 1747-1760.
doi: S0022-0302(18)31122-6
pmid: 30594377
|
[17] |
TIPLADY K M, TRINH M H, DAVIS S R, SHERLOCK R G, SPELMAN R J, GARRICK D J, HARRIS B L. Pregnancy status predicted using milk mid-infrared spectra from dairy cattle. Journal of Dairy Science, 2022, 105(4): 3615-3632.
doi: 10.3168/jds.2021-21516
pmid: 35181140
|
[18] |
BRAND W, WELLS A T, SMITH S L, DENHOLM S J, WALL E, COFFEY M P. Predicting pregnancy status from mid-infrared spectroscopy in dairy cow milk using deep learning. Journal of Dairy Science, 2021, 104(4): 4980-4990.
doi: 10.3168/jds.2020-18367
pmid: 33485687
|
[19] |
MENSCHING A, ZSCHIESCHE M, HUMMEL J, GRELET C, GENGLER N, DÄNICKE S, SHARIFI A R. Development of a subacute ruminal acidosis risk score and its prediction using milk mid-infrared spectra in early-lactation cows. Journal of Dairy Science, 2021, 104(4): 4615-4634.
doi: 10.3168/jds.2020-19516
pmid: 33589252
|
[20] |
DENHOLM S J, BRAND W, MITCHELL A P, WELLS A T, KRZYZELEWSKI T, SMITH S L, WALL E, COFFEY M P. Predicting bovine tuberculosis status of dairy cows from mid-infrared spectral data of milk using deep learning. Journal of Dairy Science, 2020, 103(10): 9355-9367.
doi: S0022-0302(20)30619-6
pmid: 32828515
|
[21] |
BONFATTI V, HO P N, PRYCE J E. Usefulness of milk mid-infrared spectroscopy for predicting lameness score in dairy cows. Journal of Dairy Science, 2020, 103(3): 2534-2544.
doi: S0022-0302(19)31132-4
pmid: 31882209
|
[22] |
SOYEURT H, BRUWIER D, ROMNEE J M, GENGLER N, BERTOZZI C, VESELKO D, DARDENNE P. Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry. Journal of Dairy Science, 2009, 92(6): 2444-2454.
doi: 10.3168/jds.2008-1734
pmid: 19447976
|
[23] |
GRELET C, DARDENNE P, SOYEURT H, FERNANDEZ J A, VANLIERDE A, STEVENS F, GENGLER N, DEHARENG F. Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions. Methods, 2021, 186: 97-111.
doi: 10.1016/j.ymeth.2020.07.012
pmid: 32763376
|
[24] |
BONFATTI V, DEGANO L, MENEGOZ A, CARNIER P. Short communication: Mid-infrared spectroscopy prediction of fine milk composition and technological properties in Italian Simmental. Journal of Dairy Science, 2016, 99(10): 8216-8221.
doi: S0022-0302(16)30489-1
pmid: 27497897
|
[25] |
MALACARNE M, VISENTIN G, SUMMER A, CASSANDRO M, PENASA M, BOLZONI G, ZANARDI G, DE MARCHI M. Investigation on the effectiveness of mid-infrared spectroscopy to predict detailed mineral composition of bulk milk. The Journal of Dairy Research, 2018, 85(1): 83-86.
|
[26] |
FRANZOI M, NIERO G, PENASA M, DE MARCHI M. Development of infrared prediction models for diffusible and micellar minerals in bovine milk. Animals, 2019, 9(7): 430.
|
[27] |
ZAALBERG R M, POULSEN N A, BOVENHUIS H, SEHESTED J, LARSEN L B, BUITENHUIS A J. Genetic analysis on infrared- predicted milk minerals for Danish dairy cattle. Journal of Dairy Science, 2021, 104(8): 8947-8958.
|
[28] |
GOTTARDO P, DE MARCHI M, CASSANDRO M, PENASA M. Technical note: Improving the accuracy of mid-infrared prediction models by selecting the most informative wavelengths. Journal of Dairy Science, 2015, 98(6): 4168-4173.
doi: 10.3168/jds.2014-8752
pmid: 25828654
|
[29] |
NIERO G, PENASA M, GOTTARDO P, CASSANDRO M, DE MARCHI M. Short communication: selecting the most informative mid-infrared spectra wavenumbers to improve the accuracy of prediction models for detailed milk protein content. Journal of Dairy Science, 2016, 99(3): 1853-1858.
doi: S0022-0302(16)00040-0
pmid: 26774721
|
[30] |
XIAO S J, WANG Q H, LI C F, LIU W J, ZHANG J J, FAN Y K, SU J D, WANG H T, LUO X L, ZHANG S J. Rapid identification of A1 and A2 milk based on the combination of mid-infrared spectroscopy and chemometrics. Food Control, 2022, 134: 108659.
|
[31] |
褚楚, 张静静, 丁磊, 樊懿楷, 包向男, 向世馨, 刘锐, 罗雪路, 任小丽, 李春芳, 刘文举, 王亮, 刘莉, 李永青, 江汉, 李委奇, 孙伟, 李喜和, 温万, 周佳敏, 张淑君. 基于中红外光谱的牛奶中三种氨基酸含量预测模型的建立及应用. 畜牧兽医学报, 2023, 54(8): 3299-3312.
doi: 10.11843/j.issn.0366-6964.2023.08.016
|
|
CHU C, ZHANG J J, DING L, FAN Y K, BAO X N, XIANG S X, LIU R, LUO X L, REN X L, LI C F, LIU W J, WANG L, LIU L, LI Y Q, JIANG H, LI W Q, SUN W, LI X H, WEN W, ZHOU J M, ZHANG S J. Establishment and application of prediction model of three amino acids in milk based on mid-infrared spectroscopy. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3299-3312. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2023.08.016
|
[32] |
LI H D, LIANG Y Z, XU Q S, CAO D S. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Analytica Chimica Acta, 2009, 648(1): 77-84.
doi: 10.1016/j.aca.2009.06.046
pmid: 19616692
|
[33] |
ZHAO X X, SONG Y T, ZHANG Y P, CAI G Z, XUE G H, LIU Y, CHEN K W, ZHANG F, WANG K, ZHANG M, GAO Y D, SUN D X, WANG X, LI J B. Predictions of milk fatty acid contents by mid-infrared spectroscopy in Chinese Holstein cows. Molecules, 2023, 28(2): 666.
|
[34] |
GOI A, DE MARCHI M, COSTA A. Minerals and essential amino acids of bovine colostrum: Phenotypic variability and predictive ability of mid- and near-infrared spectroscopy. Journal of Dairy Science, 2023, 106(12): 8341-8356.
|
[35] |
CENTNER V, MASSART D L, DE NOORD O E, DE JONG S, VANDEGINSTE B M, STERNA C. Elimination of uninformative variables for multivariate calibration. Analytical Chemistry, 1996, 68(21): 3851-3858.
doi: 10.1021/ac960321m
pmid: 21619260
|