





			中国农业科学 ›› 2022, Vol. 55 ›› Issue (19): 3831-3840.doi: 10.3864/j.issn.0578-1752.2022.19.012
收稿日期:2021-12-20
									
				
									
				
											接受日期:2022-02-15
									
				
											出版日期:2022-10-01
									
				
											发布日期:2022-10-10
									
			通讯作者:
					陆国权
							作者简介:崔鹏,E-mail: 基金资助:
        
               		CUI Peng1(
),ZHAO YiRen1(
),YAO ZhiPeng2,PANG LinJiang3,LU GuoQuan1(
)
			  
			
			
			
                
        
    
Received:2021-12-20
									
				
									
				
											Accepted:2022-02-15
									
				
											Online:2022-10-01
									
				
											Published:2022-10-10
									
			Contact:
					GuoQuan LU  		     					     	
							摘要:
【目的】淀粉是甘薯块根的主要组成成分,淀粉理化特性直接决定着甘薯的主要用途;同时,甘薯是较为典型的喜温作物,对储藏温度较为敏感。因此,研究低温对淀粉理化特性的影响,为甘薯安全储藏提供参考。【方法】本研究以‘烟薯25’和‘商薯19’为试验材料,设置适温(13℃,CK)和低温(4℃)储藏14 d,分析甘薯块根淀粉粒径大小与分布、热焓特性、糊化特性、吸湿性及膨胀力等特征指标的差异。【结果】不同甘薯品种的直链/支链淀粉含量存在显著差异,‘商薯19’的直链淀粉含量(31.47%)显著高于‘烟薯25’(25.86%),支链淀粉则完全相反;‘烟薯25’和‘商薯19’的平均粒径、体积和表面积均分别分布于≤2.50 μm、2.50—5.00 μm和5.00—25.00 μm三个区间,低温胁迫使二者的淀粉颗粒平均粒径降低,体积和表面积减小,吸湿性和膨胀力降低;‘烟薯25’和‘商薯19’薯块淀粉在糊化过程中的起始温度(T0)、峰值温度(Tp)和热晗值(△H)与CK相比均显著下降,其中,‘烟薯25’的△H变化幅度高于‘商薯19’,表明低温对‘烟薯25’淀粉热特性的影响程度高于‘商薯19’;低温储藏条件下,‘烟薯25’和‘商薯19’的最高黏度(PKV)、崩解值(BDV)和回复值(CSV)均显著下降,糊化温度(PT)受低温的影响不显著,但品种间差异显著;低温下,基因IbAGPa(ADP-葡萄糖焦磷酸化酶)、IbAGPb、IbSBEI(淀粉分支酶)和IbSBEII的表达量均显著下降,而Ibα-amylase(淀粉水解酶)和Ibβ-amylase则显著上升。【结论】温度是影响甘薯淀粉理化品质的重要因素,甘薯块根淀粉理化特性变化与甘薯储藏温度密切相关。
崔鹏,赵逸人,姚志鹏,庞林江,陆国权. 低温对甘薯淀粉理化特性及代谢关键基因表达量的影响[J]. 中国农业科学, 2022, 55(19): 3831-3840.
CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature[J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
表1
引物信息"
| 引物名称  Primer name  |  引物序列(5′-3′)  Primer sequence (5′-3′)  | 
|---|---|
| Actin-F | ATGATAACTCGACGGATCGC | 
| Actin-R | CTTGGATGTGGTAGCCGTTT | 
| IbAGPa-F | TCGACGGTGATGTTAGCAAG | 
| IbAGPa -R | AACAGCCTTTGGAGAAACGA | 
| IbSBEI-F | GGTTTACGGGTCTTGATGGA | 
| IbSBEI-R | AACAGCCTGCTATCCCACAC | 
| IbSBEII-F | CTTCCCTGAAGCCATAACCA | 
| IbSBEII-R | CCATTTGCCAATCCTCATCT | 
| Ibα-amlyas-F | CTGCATTTTTGTTCCTGCAA | 
| Ibα-amlyas-R | TTCGATGCGTCCAAGTCATA | 
| Ibβ-amlyase-F | AGACTGGAAGGAGGCTGTGA | 
| Ibβ-amlyase-R | TGTTGGCTTCTTCGAGGACT | 
表2
低温对甘薯块根淀粉主要组分含量的影响"
| 品种  Variety  |  储藏温度  Storage temperature (℃)  |  直链淀粉  Amylose (%)  |  支链淀粉  Amylopectin (%)  |  氮  Nitrogen (%)  |  磷  Phosphorus (%)  |  总脂肪  Total lipid (%)  | 
|---|---|---|---|---|---|---|
| 烟薯25  Yanshu 25  |  13 (CK) | 25.86±0.06b | 68.82±0.03a | 2.11±0.01b | 1.45±0.007c | 1.76±0.006b | 
| 4 (LT) | 24.22±0.04b | 67.59±0.05a | 2.89±0.008a | 2.68±0.003a | 2.62±0.005a | |
| 商薯19  Shangshu 19  |  13 (CK) | 31.47±0.02a | 65.36±0.04b | 1.13±0.007c | 1.66±0.008c | 0.38±0.008c | 
| 4 (LT) | 30.11±0.03a | 64.87±0.07b | 2.25±0.009b | 2.09±0.005b | 0.68±0.008c | 
表3
低温对甘薯块根淀粉粒径及其体积分布的影响"
| 品种  Variety  |  储藏温度  Storage temperature (℃)  |  淀粉粒径及其体积分布Granule diameter and volume frequency percent | |||||
|---|---|---|---|---|---|---|---|
| ≤2.50 μm | 2.50—5.00 μm | 5.00—25.00 μm | |||||
| 百分比  Percent (%)  |  平均粒径  Average granule diameter  |  百分比  Percent (%)  |  平均粒径  Average granule diameter  |  百分比  Percent (%)  |  平均粒径  Average granule diameter  | ||
| 烟薯25  Yanshu 25  |  13 (CK) | 12.05b | 1.67±0.05a | 6.24b | 4.13±0.02a | 81.71b | 16.21±0.04a | 
| 4 (LT) | 10.41c | 1.53±0.03b | 6.62b | 3.94±0.03a | 82.97a | 13.66±0.03b | |
| 商薯19  Shangshu 19  |  13 (CK) | 11.75b | 1.83±0.04a | 8.54b | 4.07±0.02a | 79.71c | 14.72±0.03b | 
| 4 (LT) | 14.93a | 1.72±0.04a | 10.90a | 3.81±0.02a | 74.17d | 16.93±0.02a | |
表4
低温对甘薯块根淀粉粒径及其表面积分布的影响"
| 品种  Variety  |  储藏温度  Storage temperature (℃)  |  淀粉粒径及其表面积分布Granule diameter and surface area frequency percent | |||||
|---|---|---|---|---|---|---|---|
| ≤2.50 μm | 2.50—5.00 μm | 5.00—25.00 μm | |||||
| 百分比  Percent (%)  |  平均粒径  Average granule diameter  |  百分比  Percent (%)  |  平均粒径  Average granule diameter  |  百分比  Percent (%)  |  平均粒径  Average granule diameter  | ||
| 烟薯25  Yanshu 25  |  13 (CK) | 52.31b | 1.84±0.04b | 6.88b | 4.64±0.06a | 40.81a | 18.66±0.03a | 
| 4 (LT) | 51.23b | 2.02±0.03a | 7.34b | 4.37±0.07b | 41.43a | 15.21±0.07b | |
| 商薯19  Shangshu 19  |  13 (CK) | 55.63a | 2.11±0.05a | 8.28a | 4.58±0.06a | 36.09b | 16.03±0.05b | 
| 4 (LT) | 54.01a | 1.93±0.05b | 9.12a | 4.31±0.05b | 36.87b | 17.71±0.04a | |
表5
低温对甘薯块根淀粉DSC特征参数的影响"
| 品种  Varieties  |  储藏温度  Storage temperature (℃)  |  热焓值  △H (J·g-1)  |  起始温度  T0 (℃)  |  峰值温度  Tp (℃)  |  终止温度  Tc (℃)  | 
|---|---|---|---|---|---|
| 烟薯25  Yanshu 25  |  13 (CK) | 14.56±0.11a | 62.52±0.24a | 71.14±0.04a | 82.15±0.34a | 
| 4 (LT) | 14.25±0.12b | 58.11±0.18b | 69.67±0.13b | 82.94±0.12a | |
| 商薯19  Shangshu 19  |  13 (CK) | 14.41±0.09a | 63.02±0.19a | 72.34±0.22a | 83.05±0.19a | 
| 4 (LT) | 14.17±0.06b | 61.91±0.12b | 70.33±0.19b | 82.64±0.28a | 
表6
低温对甘薯块根淀粉RVA特征参数的影响"
| 品种  Variety  |  储藏温度  Storage temperature (℃)  |  最高黏度  PKV (cp)  |  最低黏度  HPV (cp)  |  崩解值  BDV (cp)  |  最终黏度  CPV (cp)  |  回复值  CSV (cp)  |  糊化温度  PT (℃)  | 
|---|---|---|---|---|---|---|---|
| 烟薯25  Yanshu 25  |  13 (CK) | 6531±8.32a | 2705±5.84b | 3872±9.43a | 3587±9.82b | 952±9.48b | 73.21±1.20b | 
| 4 (LT) | 6019±7.54b | 2934±6.34a | 3783±8.34c | 3783±7.87a | 823±8.11b | 73.60±0.80b | |
| 商薯19  Shangshu 25  |  13 (CK) | 5890±6.92c | 2380±7.88c | 3198±5.45b | 3498±8.22b | 1260±7.36a | 74.17±0.52a | 
| 4 (LT) | 5105±7.73d | 2110±8.43d | 3012±4.67c | 3221±6.23c | 1212±8.31a | 75.72±0.75a | 
| [1] |  
											  王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54(3): 483-492. doi: 10.3864/j.issn.0578-1752.2021.03.003. 
											 												 doi: 10.3864/j.issn.0578-1752.2021.03.003  | 
										
|  
											  WANG X, LI Q, CAO Q H, MA D F. Current status and future prospective of sweetpotato production and seed industry in China. Scientia Agricultura Sinica, 2021, 54(3): 483-492. doi: 10.3864/j.issn.0578-1752.2021.03.003. (in Chinese) 
											 												 doi: 10.3864/j.issn.0578-1752.2021.03.003  | 
										|
| [2] |  
											  ZHOU W Z, YANG J, HONG Y, LIU G L, ZHENG J L, GU Z B, ZHANG P. Impact of amylose content on starch physicochemical properties in transgenic sweet potato. Carbohydrate Polymers, 2015, 122: 417-427. doi: 10.1016/j.carbpol.2014.11.003. 
											 												 doi: 10.1016/j.carbpol.2014.11.003 pmid: 25817686  | 
										
| [3] |  
											  ZHANG K, WU Z D, TANG D B, LUO K, LU H X, LIU Y Y, DONG J, WANG X, LV C W, WANG J C, LU K. Comparative transcriptome analysis reveals critical function of sucrose metabolism related- enzymes in starch accumulation in the storage root of sweet potato. Frontiers in Plant Science, 2017, 8: 914. 
											 												 doi: 10.3389/fpls.2017.00914  | 
										
| [4] |  
											  HOOVER R. Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydrate Polymer, 2001, 45(3): 253-267. 
											 												 doi: 10.1016/S0144-8617(00)00260-5  | 
										
| [5] | 谭洪卓, 谭斌, 刘明, 田晓红, 谷文英. 甘薯淀粉性质与其粉丝品质的关系. 农业工程学报, 2009, 25(4): 286-292. | 
| TAN H Z, TAN B, LIU M, TIAN X H, GU W Y. Relationship between properties of sweet potato starch and qualities of sweet potato starch noodles. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(4): 286-292. (in Chinese) | |
| [6] |  
											  ZHU F, WANG S N. Physicochemical properties, molecular structure, and uses of sweetpotato starch. Trends in Food Science and Technology, 2014, 36(2): 68-78. 
											 												 doi: 10.1016/j.tifs.2014.01.008  | 
										
| [7] |  
											  NODA T, KOBAYASHI T, SUDA I. Effect of soil temperature on starch properties of sweet potatoes. Carbohydrate Polymer, 2001, 44(3): 239-246. 
											 												 doi: 10.1016/S0144-8617(00)00227-7  | 
										
| [8] |  
											  唐忠厚, 李洪民, 张爱君, 史新敏, 徐飞, 孙健. 施钾对甘薯常规品质性状及其淀粉RVA特性的影响. 浙江农业学报, 2011, 23(1): 46-51. doi: 10.3969/j.issn.1004-1524.2011.01.009. 
											 												 doi: 10.3969/j.issn.1004-1524.2011.01.009  | 
										
|  
											  TANG Z H, LI H M, ZHANG A J, SHI X M, XU F, SUN J. Effect of potassium fertilizer application on main quality traits and starch RVA characters of sweetpotato. Acta Agriculturae Zhejiangensis, 2011, 23(1): 46-51. doi: 10.3969/j.issn.1004-1524.2011.01.009. (in Chinese) 
											 												 doi: 10.3969/j.issn.1004-1524.2011.01.009  | 
										|
| [9] |  
											  柳洪鹃, 姚海兰, 史春余, 张立明. 施钾时期对甘薯济徐23块根淀粉积累与品质的影响及酶学生理机制. 中国农业科学, 2014, 47(1): 43-52. doi: 10.3864/j.issn.0578-1752.2014.01.005. 
											 												 doi: 10.3864/j.issn.0578-1752.2014.01.005  | 
										
|  
											  LIU H J, YAO H L, SHI C Y, ZHANG L M. Effect of potassium application time on starch accumulation and related enzyme activities of sweet potato variety Jixu 23. Scientia Agricultura Sinica, 2014, 47(1): 43-52. doi: 10.3864/j.issn.0578-1752.2014.01.005. (in Chinese) 
											 												 doi: 10.3864/j.issn.0578-1752.2014.01.005  | 
										|
| [10] | 唐忠厚, 张爱君, 陈晓光, 靳容, 刘明, 李洪民, 丁艳锋. 低钾胁迫对甘薯块根淀粉理化特性的影响及其基因型差异. 中国农业科学, 2017, 50(3): 513-525. | 
| TANG Z H, ZHANG A J, CHEN X G, JIN R, LIU M, LI H M, DING Y F. Starch physico-chemical properties and their difference in three sweetpotato (Ipomoea batatas(L.) lam) genotypes under low potassium stress. Scientia Agricultura Sinica, 2017, 50(3): 513-525. (in Chinese) | |
| [11] | 解则义, 李洪民, 马代夫, 陈天娇, 韩永华, 李宗芸. 低温胁迫影响甘薯贮藏的研究进展. 植物生理学报, 2017, 53(5): 758-767. | 
| XIE Z Y, LI H M, MA D F, CHEN T J, HAN Y H, LI Z Y. Research progress of the effects of low temperature stress on the sweetpotato during storage. Plant Physiology Journal, 2017, 53(5): 758-767. (in Chinese) | |
| [12] |  
											  LI X, YANG H Q, LU G Q. Low-temperature conditioning combined with cold storage inducing rapid sweetening of sweetpotato tuberous roots (Ipomoea batatas (L.) Lam) while inhibiting chilling injury. Postharvest Biology and Technology, 2018, 142: 1-9. 
											 												 doi: 10.1016/j.postharvbio.2018.04.002  | 
										
| [13] |  
											  CHAUDHARY P R, JAYAPRAKASHA G K, PORAT R, PATIL B S. Low temperature conditioning reduces chilling injury while maintaining quality and certain bioactive compounds of ‘Star Ruby’ grapefruit. Food Chemistry, 2014, 153: 243-249. doi: 10.1016/j.foodchem.2013.12.043. 
											 												 doi: 10.1016/j.foodchem.2013.12.043  | 
										
| [14] |  
											  JIN P, ZHANG Y, SHAN T, HUANG Y, XU J, ZHENG Y. Low-temperature conditioning alleviates chilling injury in loquat fruit and regulates glycine betaine content and energy status. Journal of Agricultural and Food Chemistry, 2015, 63(14): 3654-3659. doi: 10.1021/acs.jafc.5b00605. 
											 												 doi: 10.1021/acs.jafc.5b00605 pmid: 25822129  | 
										
| [15] | 江凌峰, 周淑倩, 潘靖禹, 杨虎清, 陆国权, 李永新. 不同贮藏时间及温度对新鲜甘薯淀粉特性的影响. 中国粮油学报. https://kns.cnki.net/kcms/detail/11.2864.TS.20210609.1743.014.html. | 
| JIANG L F, ZHOU S Q, PAN J Y, YANG H Q, LU G Q, LI Y X. Effect of different storage time and temperature on starch properties of fresh sweet potato. Journal of the Chinese Cereals and Oils Association. https://kns.cnki.net/kcms/detail/11.2864.TS.20210609.1743.014.html. (in Chinese) | |
| [16] |  
											  SHIMADA T, OTANI M, HAMADA T, KIM S H. Increase of amylose content of sweetpotato starch by RNA interference of the starch branching enzyme II gene (IbSBEII). Plant Biotechnology, 2006, 23(1): 85-90. 
											 												 doi: 10.5511/plantbiotechnology.23.85  | 
										
| [17] | 唐忠厚, 朱晓倩, 李强, 李洪民, 徐飞. 不同基因型甘薯直链淀粉含量差异研究. 食品工业科技, 2011, 32(11): 108-110. | 
| TANG Z H, ZHU X Q, LI Q, LI H M, XU F. Genotype variation in amylose content of sweetpotato. Science and Technology of Food Industry, 2011, 32(11): 108-110. (in Chinese) | |
| [18] |  
											  RASPER V. Investigations on starches from major starch crops grown in Ghana: III.-Particle size and particle size distribution. Journal of the Science of Food and Agriculture, 1971, 22(11): 572-580. 
											 												 doi: 10.1002/jsfa.2740221105  | 
										
| [19] |  
											  YI J, KERR W L, JOHNSON J W. Effects of waxy wheat flour and water on frozen dough and bread properties. Journal of Food Science, 2009, 74(5): E278-E284. doi: 10.1111/j.1750-3841.2009.01180.x. 
											 												 doi: 10.1111/j.1750-3841.2009.01180.x  | 
										
| [20] |  
											  SILVAS-GARCIA M I, RAMIREZ-WONG B, TORRES-CHAVEZ P I, BELLO P, LUIS A, CARVAJAL M, Elizabeth, BARRON H, JESUS M, RODRIGUEZ G, MARIO E, VASQUEZ L, VAZQUEZ-LARA F, QUINTERO-RAMOS A. Effect of freezing rate and storage on the rheological, thermal and structural properties of frozen wheat dough starch. Starch-Stärke, 2016, 68(11/12): 1103-1110. 
											 												 doi: 10.1002/star.201500123  | 
										
| [21] | 史春余, 姚海兰, 张立明, 柳洪鹃, 张超, 刘桂玲. 不同类型甘薯品种块根淀粉粒粒度的分布特征. 中国农业科学, 2011, 44(21): 4537-4543. | 
| SHI C Y, YAO H L, ZHANG L M, LIU H J, ZHANG C, LIU G L. Starch Granule size distribution in storage roots of different types of sweetpotato cultivars. Scientia Agricultura Sinica, 2011, 44(21): 4537-4543. (in Chinese) | |
| [22] |  
											  PYCIA K, JUSZCZSK L, GALKOWSKA D, WITCZAK M. Physicochemical properties of starches obtained from Polish potato cultivars. Starch-Starke, 2012, 64(2): 105-114. 
											 												 doi: 10.1002/star.201100072  | 
										
| [23] |  
											  BHASKAR P B, WU L, BUSSE J S, WHITTY B R, HAMERNIK A J, JANSKY S H, BUELL C R, BETHKE P C, JIANG J. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiology, 2010, 154(2): 939-948. doi: 10.1104/pp.110.162545. 
											 												 doi: 10.1104/pp.110.162545 pmid: 20736383  | 
										
| [24] |  
											  CHARLES M T, MAKHLOUF J, ARUL J. Physiological basis of UV-C induced resistance to Botrytis cinereal in tomato fruit: II. Modification of fruit surface and changes in fungal colonization. Postharvest Biology and Technology, 2008, 47(1): 21-26. 
											 												 doi: 10.1016/j.postharvbio.2007.05.014  | 
										
| [25] |  
											  COLEBROOK E H, THOMAS S G, PHILLIPS A L, HEDDEN P. The role of gibberellin signalling in plant responses to abiotic stress. The Journal of Experimental Biology, 2014, 217(1): 67-75. doi: 10.1242/jeb.089938. 
											 												 doi: 10.1242/jeb.089938  | 
										
| [26] |  
											  COOLS K, ALAMAR M D C, TERRY L A. Controlling sprouting in potato tubers using ultraviolet-irradiance. Postharvest Biology and Technology, 2014, 98(1): 106-114. 
											 												 doi: 10.1016/j.postharvbio.2014.07.005  | 
										
| [27] | PESHEV D, VAN DEN ENDE W. Sugars as antioxidants in plants// Crop Improvement Under Adverse Conditions. Springer-Verlag, Berlin, Heidelberg, Germany, 2013: 285-308. | 
| [28] |  
											  VAN DEN ENDE W, VALLURU R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: Scavenging and salvaging? Journal of Experimental Botany, 2008, 60(1): 9-18. doi: 10.1093/jxb/ern297. 
											 												 doi: 10.1093/jxb/ern297  | 
										
| [29] |  
											  BOLOURI-MOGHADDAM M R, LE ROY K, XIANG L, ROLLAND F, VAN DEN ENDE W. Sugar signalling and antioxidant network connections in plant cells. The FEBS Journal, 2010, 277(9): 2022-2037. doi: 10.1111/j.1742-4658.2010.07633.x. 
											 												 doi: 10.1111/j.1742-4658.2010.07633.x  | 
										
| [30] |  
											  KEUNEN E, PESHEV D, VANGRONSVELD J, VAN DEN ENDE W, CUYPERS A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant, Cell & Environment, 2013, 36(7): 1242-1255. doi: 10.1111/pce.12061. 
											 												 doi: 10.1111/pce.12061  | 
										
| [31] |  
											  SPERDOULI I, MOUSTAKAS M. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Journal of Plant Physiology, 2012, 169(6): 577-585. doi: 10.1016/j.jplph.2011.12.015. 
											 												 doi: 10.1016/j.jplph.2011.12.015  | 
										
| [32] |  
											  CUI P, LI Y, CUI C, HUO Y, LU G, YANG H. Proteomic and metabolic profile analysis of low-temperature storage responses in Ipomoea batata Lam. tuberous roots. BMC Plant Biology, 2020, 20(1): 435. doi: 10.1186/s12870-020-02642-7. 
											 												 doi: 10.1186/s12870-020-02642-7  | 
										
| [1] | 刘瑞, 赵羽涵, 付忠举, 顾欣怡, 王艳霞, 靳学慧, 杨莹, 吴伟怀, 张亚玲. 黑龙江省和海南省PWL基因家族在稻瘟病菌中的分布及变异[J]. 中国农业科学, 2023, 56(2): 264-274. | 
| [2] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. | 
| [3] | 张克坤,陈可钦,李婉平,乔浩蓉,张俊霞,刘凤之,房玉林,王海波. 灌水量对限根栽培‘阳光玫瑰’葡萄果实发育与香气物质积累的影响[J]. 中国农业科学, 2023, 56(1): 129-143. | 
| [4] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. | 
| [5] | 莫文静,朱嘉伟,何新华,余海霞,江海玲,覃柳菲,张艺粒,李雨泽,罗聪. 芒果MiZAT10A和MiZAT10B功能分析[J]. 中国农业科学, 2023, 56(1): 193-202. | 
| [6] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. | 
| [7] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. | 
| [8] | 赵海霞,肖欣,董玘鑫,吴花拉,李成磊,吴琦. 苦荞愈伤遗传转化体系的优化及用于FtCHS1的过表达分析[J]. 中国农业科学, 2022, 55(9): 1723-1734. | 
| [9] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. | 
| [10] | 王俊娟,陆许可,王延琴,王帅,阴祖军,付小琼,王德龙,陈修贵,郭丽雪,陈超,赵兰杰,韩迎春,孙亮庆,韩明格,张悦新,范亚朋,叶武威. 陆地棉遗传标准系TM-1的特性及其耐冷性[J]. 中国农业科学, 2022, 55(8): 1503-1517. | 
| [11] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. | 
| [12] | 汪文娟,苏菁,陈深,杨健源,陈凯玲,冯爱卿,汪聪颖,封金奇,陈炳,朱小源. 广东省侵染美香占2号的稻瘟病菌致病性及无毒基因变异分析[J]. 中国农业科学, 2022, 55(7): 1346-1358. | 
| [13] | 刘教,刘畅,陈进,王勉之,熊文广,曾振灵. 多重耐药大肠杆菌中前噬菌体的分布特征及诱导分离[J]. 中国农业科学, 2022, 55(7): 1469-1478. | 
| [14] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. | 
| [15] | 巢成生,王玉乾,沈欣杰,代晶,顾炽明,李银水,谢立华,胡小加,秦璐,廖星. 甘蓝型油菜苗期氮高效吸收转运特征研究[J]. 中国农业科学, 2022, 55(6): 1172-1188. | 
										
  | 
								||