中国农业科学 ›› 2022, Vol. 55 ›› Issue (18): 3516-3529.doi: 10.3864/j.issn.0578-1752.2022.18.004
李小凡(),邵靖宜(),于维祯,刘鹏,赵斌,张吉旺(),任佰朝()
收稿日期:
2021-12-01
接受日期:
2022-01-28
出版日期:
2022-09-16
发布日期:
2022-09-22
联系方式:
李小凡,E-mail: 1014154724@qq.com。|邵靖宜,E-mail: 328479886@qq.com
基金资助:
XiaoFan LI(),JingYi SHAO(),WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG(),BaiZhao REN()
Received:
2021-12-01
Accepted:
2022-01-28
Published:
2022-09-16
Online:
2022-09-22
摘要:
【目的】气候变化导致全球变暖,高温、干旱等极端天气频发,且生产中高温干旱时常相伴发生。本研究旨在探讨不同生育时期高温干旱复合胁迫影响夏玉米产量和光合特性的生理机制。【方法】选用DH605为试验材料,设置不同生育时期高温(T)、干旱(D)以及高温干旱复合(T-D)处理。2019年于三叶期(V3)、拔节期(V6)和抽雄期(VT)进行,2020年于三叶期(V3)、大喇叭口期(V12)和抽雄期(VT)进行,以自然温度和正常水分处理为对照(CK)。研究不同生育时期高温干旱复合处理对夏玉米产量、光合特性以及干物质的积累与分配的影响。【结果】不同生育时期高温干旱复合胁迫处理后,夏玉米LAI和SPAD值均显著降低,光合性能下降,净光合速率(Pn)显著降低。其中VT时期复合胁迫对Pn影响最显著,VT时期的T-D处理的Pn较CK平均下降39.0%,且高温干旱复合处理后夏玉米净光合速率的下降幅度大于高温、干旱等单一胁迫。高温干旱复合处理引发夏玉米光合性能降低,导致夏玉米干物质积累能力及向籽粒分配比例的下降,进而导致产量显著降低。2019年V3、V6、VT时期的T-D处理的产量较CK分别降低27.4%、18.3%和66.5%;2020年V3、V12、VT时期的T-D处理的产量较CK分别降低14.5%、14.6%和68.7%。【结论】不同生育时期的高温干旱复合胁迫导致夏玉米叶面积指数和叶绿素含量降低,气体交换受抑制,光合性能下降,导致光合同化物的积累与分配受阻,产量显著降低。其中,抽雄期遭受高温干旱复合胁迫后对夏玉米产量和光合特性的影响最大,且复合胁迫对其影响大于单一胁迫。
李小凡, 邵靖宜, 于维祯, 刘鹏, 赵斌, 张吉旺, 任佰朝. 高温干旱复合胁迫对夏玉米产量及光合特性的影响[J]. 中国农业科学, 2022, 55(18): 3516-3529.
XiaoFan LI, JingYi SHAO, WeiZhen YU, Peng LIU, Bin ZHAO, JiWang ZHANG, BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize[J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
表1
高温、干旱及其复合处理对夏玉米产量及其构成因素的影响"
年份 Year | 生育时期 Growth stage | 处理 Treatment | 穗粒数 Kernels per spike | 千粒重 1000-grain weight (g) | 产量 Grain yield (g/plant) |
---|---|---|---|---|---|
2019 | V3 | T | 600.3d | 364.5bc | 254.4d |
D | 556.0e | 366.7b | 237.1e | ||
T-D | 554.7e | 343.9d | 221.8f | ||
V6 | T | 648.0b | 368.7b | 277.8b | |
D | 633.0c | 362.6bc | 266.9c | ||
T-D | 556.3e | 385.4a | 249.4d | ||
VT | T | 266.0g | 351.2cd | 108.6g | |
D | 507.3f | 365.9bc | 215.8f | ||
T-D | 261.0g | 337d | 102.3g | ||
CK | 725.3a | 362.0bc | 305.4a | ||
2020 | V3 | T | 681.3cd | 347.5b | 275.3b |
D | 700.0b | 339.4c | 276.3b | ||
T-D | 653.7f | 332.3d | 252.7d | ||
V12 | T | 684.3c | 333.7d | 265.5c | |
D | 674.0d | 334.5d | 262.2c | ||
T-D | 663.0e | 327.1e | 252.2d | ||
VT | T | 269.7g | 322.5f | 101.1e | |
D | 654.3f | 331.5d | 252.3d | ||
T-D | 256.0h | 311.0g | 92.5e | ||
CK | 709.0a | 358.1a | 295.4a | ||
变异来源 Source of variation | 年份Year (Y) | ** | ** | ** | |
生育时期Growth stage (G) | ** | ** | ** | ||
处理Treatment (T) | ** | ** | ** | ||
Y×G | ** | ** | ** | ||
Y×T | ** | ** | ** | ||
T×G | ** | ** | ** | ||
Y×G×T | ** | ** | ** |
表2
高温、干旱及其复合处理对玉米光合速率及气体交换参数的影响"
年份 Year | 生育时期 Growth stage | 处理 Treatment | 净光合速率 Pn (μmol·m-2·s-1) | 蒸腾速率 Tr (μmol·m-2·s-1) | 气孔导度 Gs (μmol·m-2·s-1) | 胞间二氧化碳浓度 Ci (μmol·m-2·s-1) | |||
---|---|---|---|---|---|---|---|---|---|
2019 | V3 | T | 35.8ab | 7.0bc | 450.0a | 278.7a | |||
D | 32.5b | 6.9bc | 339.0b | 227.7c | |||||
T-D | 26.9c | 6.7bcd | 315.0c | 191.3d | |||||
V6 | T | 32.6b | 7.7ab | 330.3b | 180.3e | ||||
D | 31.9b | 5.8de | 163.0h | 263.0b | |||||
T-D | 27.6c | 5.4e | 221.0g | 158.0f | |||||
VT | T | 25.1cd | 6.0cde | 236.5e | 112.5g | ||||
D | 25.9cd | 5.4e | 235.3ef | 187.5d | |||||
T-D | 22.4d | 5.0e | 225.0fg | 91.0h | |||||
CK | 37.6a | 8.4a | 284.3d | 161.9f | |||||
变异来源 Source of variation | 生育时期Growth stage (G) | * | ** | ** | ** | ||||
处理Treatment (T) | * | * | ** | ** | |||||
G×T | ns | ns | ** | * | |||||
2020 | V3 | T | 40.5a | 7.3ab | 479.7ab | 154.0bc | |||
D | 39.0ab | 7.2ab | 482.3ab | 138.7cde | |||||
T-D | 38.0abc | 6.8b | 411.3abc | 150.3bcd | |||||
V12 | T | 39.1ab | 7.1ab | 455.7ab | 160.7ab | ||||
D | 38.4abc | 7.0ab | 456.7ab | 153.7bc | |||||
T-D | 34.8bc | 5.7cd | 374.7bc | 143.0bcde | |||||
VT | T | 33.3c | 5.6cd | 296.7cd | 126.7ef | ||||
D | 39.2ab | 6.1c | 321.3cd | 132.0def | |||||
T-D | 26.8d | 5.0d | 218.0d | 115.7f | |||||
CK | 42.9a | 7.7a | 538.0a | 177.4a | |||||
变异来源 Source of variation | 生育时期Growth stage (G) | ** | ** | ** | ** | ||||
处理Treatment (T) | ** | ** | * | * | |||||
G×T | * | * | ns | * |
表3
高温、干旱及其复合处理对干物质的分配的影响"
年份 Year | 生育时期 Growth stage | 处理 Treatment | 茎Stem | 叶Leaf | 粒Kernel | 轴Cob | ||||
---|---|---|---|---|---|---|---|---|---|---|
干重 Dry matter (g/plant) | 比例 Proportion (%) | 干重 Dry matter (g/plant) | 比例 Proportion (%) | 干重 Dry matter (g/plant) | 比例 Proportion (%) | 干重 Dry matter (g/plant) | 比例 Proportion (%) | |||
2019 | V3 | T | 169.0cd | 41.70 | 42.5bc | 10.50 | 154.9e | 38.30 | 38.4abc | 9.50 |
D | 174.4bc | 41.70 | 44.2abc | 10.60 | 157.3de | 37.60 | 41.9ab | 10.00 | ||
T-D | 165.9d | 44.80 | 38.8c | 10.50 | 133.0f | 35.90 | 32.3d | 8.70 | ||
V6 | T | 178.5ab | 39.90 | 47.5ab | 10.60 | 180.8b | 40.40 | 40.3ab | 9.00 | |
D | 181.6a | 41.70 | 48.6a | 11.20 | 168.1c | 38.60 | 37.5bc | 8.60 | ||
T-D | 166.3d | 41.20 | 40.2c | 10.00 | 162.4cd | 40.20 | 34.9cd | 8.60 | ||
VT | T | 159.5e | 43.50 | 39.0c | 10.60 | 129.6f | 35.40 | 38.5abc | 10.50 | |
D | 152.0f | 38.80 | 46.6ab | 11.90 | 153.0e | 39.00 | 40.6ab | 10.40 | ||
T-D | 132.6g | 41.80 | 39.9c | 12.60 | 110.0g | 34.60 | 35.1cd | 11.10 | ||
CK | 180.1ab | 37.40 | 49.5a | 10.30 | 208.9a | 43.30 | 43.4a | 9.00 | ||
2020 | V3 | T | 162.4d | 37.70 | 48.8ef | 11.30 | 182.4b | 42.30 | 37.2cde | 8.60 |
D | 151.7e | 35.70 | 51.6ef | 12.10 | 186.8b | 43.90 | 34.9de | 8.20 | ||
T-D | 151.1e | 37.00 | 47.6f | 11.70 | 175.8c | 43.10 | 33.7e | 8.30 | ||
V12 | T | 174.8bc | 37.60 | 63.2b | 13.60 | 186.5b | 40.10 | 41.0ab | 8.80 | |
D | 148.1e | 35.20 | 58.1d | 13.80 | 180.7bc | 42.90 | 34.2e | 8.10 | ||
T-D | 160.6d | 39.70 | 52.7e | 13.00 | 153.3e | 37.90 | 38.2bcd | 9.40 | ||
VT | T | 185.3a | 52.50 | 59.5bcd | 16.90 | 69.2f | 19.60 | 39.1bc | 11.10 | |
D | 171.5c | 39.10 | 62.4bc | 14.20 | 169.4d | 38.60 | 35.8cde | 8.20 | ||
T-D | 176.9b | 53.10 | 58.8cd | 17.70 | 63.0g | 18.90 | 34.3e | 10.30 | ||
CK | 178.8b | 37.00 | 68.1a | 14.10 | 193.0a | 39.90 | 42.8a | 8.90 |
[1] | IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. International Publishers Copyright Council, Geneva, Switzerland, 2014, 151. |
[2] | ZHAO C, LIU B, PIAO S, WANG X H, LOBELL D B, HUANG Y, HUANG M T, YAO Y T, BASSU S, CIAIS P, DURAND J L, ELLIOTT J, EWERT F, JANSSENS I A, LI T, LIN E, LIU Q, MARTRE P, MULLER C, PENG S S, PENUELAS J, RUANE A C, WALLACH D, WANG T, WU D H, LIU Z, ZHU Y, ZHU Z C, ASSENG S. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35): 9326-9331. |
[3] | MITRA R, BHATIA C R. Bioenergetic cost of heat tolerance in wheat crop. Current Science, 2008, 94(8): 1049-1053. |
[4] | 任丽雯, 王兴涛, 刘明春, 丁文魁, 蒋菊芳. 干旱胁迫对土壤水分动态及玉米水分利用效率影响研究. 中国农学通报, 2015, 31(32): 142-147. |
REN L W, WANG X T, LIU M C, DING W K, JIANG J F. Effects of drought stress on soil moisture dynamics and water use efficiency in corn. Chinese Agricultural Science Bulletin, 2015, 31(32): 142-147. (in Chinese) | |
[5] | ALIZADEH M R, ADAMOWSKI J, NIKOO M R, AGHAKOUCHAK A, DENNISON P, SADEGH M. A century of observations reveals increasing likelihood of continental- scale compound dry-hot extremes, Science Advances, 2020, 6(39): 1-12. |
[6] |
RIZWAN M, ALI S, ABBAS T, ADREES M, ZIA-UR-REHMAN M, IBRAHIM M, ABBAS F, QAYYUM M F, NAWAZ R. Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. Journal of Environmental Management, 2018, 206(15): 676-683.
doi: 10.1016/j.jenvman.2017.10.035 |
[7] | 徐庆章, 王庆成, 牛玉贞, 王忠孝, 张军. 玉米株型与群体光合作用的关系研究. 作物学报, 1995, 21(4): 492-496. |
XU Q Z, WANG Q C, NIU Y Z, WANG Z X, ZHANG J. Studies on relationship between plant type and canopy photosynthesis in maize. Acta Agronomica Sinica, 1995, 21(4): 492-496. (in Chinese) | |
[8] |
BROOKS A, FARQUHAR G D. Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta, 1985, 165: 397-406.
doi: 10.1007/BF00392238 |
[9] | 张吉旺, 董树亭, 王空军, 刘鹏, 胡昌浩. 大田增温对夏玉米光合特性的影响. 应用生态学报, 2008, 19(1): 81-86. |
ZHANG J W, DONG S T, WANG K J, LIU P, HU C H. Effects of increasing field temperature on photosynthetic characteristics of summer maize. Chinese Journal of Applied Ecology, 2008, 19(1): 81-86. (in Chinese) | |
[10] |
PRASAD P V V, PISIPATI S R, MOMCILOVIC I, RISTIC Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. Journal of Agronomy and Crop Science, 2011, 197(6): 430-441.
doi: 10.1111/j.1439-037X.2011.00477.x |
[11] |
WANG B M, LI Z, RAN Q J, LI P, PENG Z H, ZHANG J R. ZmNF-YB 16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants. Frontiers in Plant Science, 2018, 9: 709.
doi: 10.3389/fpls.2018.00709 |
[12] |
WEBBER H, MARTRE P, ASSENG S, KIMBALL B, WHITE J W, OTTMAN M, WALL G, SANCTIS G, DOLTRA J, GRANT R, KASSIE B, MAIORANO A, OLESEN J, RIPOCHE D, REZAEI E, SEMENOV M, STRATONOVITCH P, EWERT F. Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison. Field Crops Research, 2017, 202: 21-35.
doi: 10.1016/j.fcr.2015.10.009 |
[13] |
KARIM Y, FRACHEBOUD Y, STAMP Y. Effect of high temperature on seedling growth and photosynthesis of tropical maize genotypes. Journal of Agronomy and Crop Science, 2000, 184(4): 217-223.
doi: 10.1046/j.1439-037x.2000.00376.x |
[14] | 赵丽晓, 雷鸣, 王璞, 陶洪斌. 花期高温对玉米子粒发育和产量的影响. 作物杂志, 2014(4): 6-9. |
ZHAO L X, LEI M, WANG P, TAO H B. Effects of high temperature stress during flowering on maize kernel development and grain yield. Crops, 2014(4): 6-9. (in Chinese) | |
[15] | 王丽君. 黄淮海平原夏玉米季干旱、高温的发生特征及对产量的影响[D]. 北京: 中国农业大学, 2018. |
WANG L J. Spatiol-temporal characteristics of drought, heat and its effect on yield for summer maize in Huang-Huai-Hai Plian, China[D]. Beijing: China Agricultural University, 2018. (in Chinese) | |
[16] |
DEMIRALAY M, ALTUNTAS M, SEZGIN C, TERZI R, KADIOGLU A. Application of proline to root medium is more effective for amelioration of photosynthetic damages as compared to foliar spraying or seed soaking in maize seedlings under short-term drought. Turkish Journal of Biology, 2017, 41(4): 649-660.
doi: 10.3906/biy-1702-19 |
[17] |
ZHAO J, LANG Y, ZHANG S Y, ZHAO Q, ZHANG C Y, XIA J. Photosynthetic characteristics and chlorophyll a fluorescence transient in Lonicera japonica under drought stress. Acta Physiologiae Plantarum, 2019, 41(7): 1-9.
doi: 10.1007/s11738-018-2785-6 |
[18] |
HASANUZZAMAN M, NAHAR K, ALAM M, ROYCHOWDHURY R, FUJITA M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 2013, 14(5): 9643-9684.
doi: 10.3390/ijms14059643 |
[19] | 宋凤斌, 戴俊英. 干旱胁迫对玉米雌穗生长发育和产量的影响. 吉林农业大学学报, 2000, 22(1): 18-22. |
SONG F B, DAI J Y. Effect of drought stress on growth and development of female inflorecence and yield of maize. Journal of Jilin Agricultural University, 2000, 22(1): 18-22. (in Chinese) | |
[20] | 张红萍. 干旱胁迫对豌豆冠层生长及叶片生理生化指标的影响[D]. 兰州: 甘肃农业大学, 2008. |
ZHANG H P. Effects of drought stress on growth of pea canopy and physiological indexes of leaves[D]. Lanzhou: Gansu Agricultural University, 2008. (in Chinese) | |
[21] | 丁梦秋. 花后高温干旱胁迫影响糯玉米叶片衰老的生理机制研究[D]. 扬州: 扬州大学, 2019. |
DING M Q. Physiological mechanism of post-silking high temperature and drought stress affecting leaf senescence of waxy maize[D]. Yangzhou: Yangzhou University, 2019. (in Chinese) | |
[22] | CRAWFORD A J, MCLACHLAN D, HETHERINGTON A, FRANKLIN K. High temperature exposure increases plant cooling capacity. Current Biology, 2012, 22(10): 396-397. |
[23] |
CIAIS P, REICHSTEIN M, VIOVY N, GRANIER A, OGÉE J, ALLARD V, AUBINET M, BUCHMANN N, BERNHOFER C, CARRARA A, CHEVALLIER F, NOBLET N, FRIEND A, FRIEDLINGSTEIN P, GRÜNWALD T, HEINESCH B, KERONEN P, KNOHL A, KRINNER G, LOUSTAU D, MANCA G, MATTEUCCI G, MIGLIETTA F, OURCIVAL J, PAPALE D, PILEGAARD K, RAMBAL S, SEUFERT G, SOUSSANA M, SANZ M, SCHULZE E, VESALA T, VALENTINI R. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437(1/2): 529-533.
doi: 10.1038/nature03972 |
[24] | BOTA J, MEDRANO H, FLEXAS J. Is photosynthesis limited by decreased rubisco activity and RuBP content under progressive water stress? The New Phytologist, 2004, 162(3): 671-681. |
[25] | 邵靖宜, 李小凡, 于维祯, 刘鹏, 赵斌, 张吉旺, 任佰朝. 高温干旱复合胁迫对夏玉米产量和茎秆显微结构的影响. 中国农业科学, 2021, 54(17): 3623-3631. |
SHAO J Y, LI X F, YU W Z, LIU P, ZHAO B, ZHANG J W, REN B Z. Combined effects of high temperature and drought on yield and stem microstructure of summer maize. Scientia Agricultura Sinica, 2021, 54(17): 3623-3631. (in Chinese) | |
[26] | 王秋玲, 周广胜, 麻雪艳. 夏玉米叶片含水率及光合特性对不同强度持续干旱的响应. 生态学杂志, 2015, 34(11): 3111-3117. |
WANG Q L, ZHOU G S, MA X Y. Responses of summer maize leaf water content and photosynthetic characteristics to consecutive drought with different intensities. Chinese Journal of Ecology, 2015, 34(11): 3111-3117. (in Chinese) | |
[27] | 田琳, 谢晓金, 包云轩, 胡继超, 於俐, 王金鑫. 不同生育期水分胁迫对夏玉米叶片光合生理特性的影响. 中国农业气象, 2013, 34(6): 655-660. |
TIAN L, XIE X J, BAO Y X, HU J C, YU L, WANG J X. Effects of moisture stress on photosynthetic characteristics of summer maize leaf during growth stages. Chinese Journal of Agrometeorology, 2013, 34(6): 655-660. (in Chinese) | |
[28] | 芮鹏环, 韩坤龙, 王长进, 李文阳. 灌浆期高温对玉米叶片抗氧化酶活性及渗透调节物质的影响. 江苏农业科学, 2018, 46(24): 82-84. |
RUI P H, HAN K L, WANG C J, LI W Y. High temperature during grain filling period on antioxidant enzyme activities of maize leaves and the influence of osmotic adjustment substance. Jiangsu Agricultural Sciences, 2018, 46(24): 82-84. (in Chinese) | |
[29] |
丁梦秋, 闻诗文, 陆卫平, 陆大雷. 结实期弱光胁迫对甜玉米籽粒灌浆和叶片衰老的影响. 核农学报, 2017, 31(5): 964-971.
doi: 10.11869/j.issn.100-8551.2017.05.0964 |
DING M Q, WEN S W, LU W P, LU D L. Effects of weak-light stress after pollination on grain filling and leaf senescence in sweet maize. Journal of Nuclear Agricultural Sciences, 2017, 31(5): 964-971. (in Chinese)
doi: 10.11869/j.issn.100-8551.2017.05.0964 |
|
[30] |
SHEN X F, DONG Z, CHEN Y. Drought and UV-B radiation effect on photosynthesis and antioxidant parameters in soybean and maize. Acta Physiologiae Plantarum, 2015, 37(2): 1-8.
doi: 10.1007/s11738-014-1746-y |
[31] | 刘佳. 不同抗旱性玉米品种响应干旱及复水的光合生理机制[D]. 杨凌: 西北农林科技大学, 2019. |
LIU J. The photosynthetic physiology response mechanism of different drought-resistant maize varieties under drought stress and re-watering[D]. Yangling: North West Agriculture and Forestry University, 2019. (in Chinese) | |
[32] |
SINSAWAT V, LEIPNER J, STAMP P, FRACHEBOUD Y. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environmental and Experimental Botany, 2004, 52(2): 123-129.
doi: 10.1016/j.envexpbot.2004.01.010 |
[33] | 付景, 孙宁宁, 刘天学, 杨豫龙, 赵霞, 李潮海. 高温胁迫对玉米形态、叶片结构及其产量的影响. 玉米科学, 2019, 27(1): 46-53. |
FU J, SUN N N, LIU T X, YANG Y L, ZHAO X, LI C H. Effect of high temperature stress on morphology, leaf structure and grain yield of maize. Journal of Maize Sciences, 2019, 27(1): 46-53. (in Chinese) | |
[34] | 赵龙飞, 李潮海, 刘天学, 王秀萍, 僧珊珊. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响. 中国农业科学, 2012, 45(23): 4947-4958. |
ZHAO L F, LI C H, LIU T X, WANG X P, SENG S S. Effect of high temperature during flowering on photosynthetic characteristics and grain Yield and quality of different genotypes of maize (Zea Mays L.). Scientia Agricultura Sinica, 2012, 45(23): 4947-4958. (in Chinese) | |
[35] | 高杰, 张仁和, 王文斌, 李志伟, 薛吉全. 干旱胁迫对玉米苗期叶片光系统Ⅱ性能的影响. 应用生态学报, 2015, 26(5): 1391-1396. |
GAO J, ZHANG R H, WANG W B, LI Z W, XUE J Q. Effects of drought stress on performance of photosystem Ⅱ in maize seedling stage. Chinese Journal of Applied Ecology, 2015, 26(5): 1391-1396. (in Chinese) | |
[36] | 宋贺, 蒋延玲, 许振柱, 周广胜. 玉米光合生理参数对全生育期干旱与拔节后干旱过程的响应. 生态学报, 2019, 39(7): 2405-2415. |
SONG H, JIANG Y L, XU Z Z, ZHOU G S. Response of photosynthetic physiological parameters of maize to drought during the whole growth period and after the jointing stage. Acta Ecologica Sinica, 2019, 39(7): 2405-2415. (in Chinese) | |
[37] | 马郁荻, 王闯, 宋韶帅, 宋楠, 李松平. 干旱对夏玉米生育期生长及耗水的影响. 河南水利与南水北调, 2021, 50(6): 88-90. |
MA Y D, WANG C, SONG S S, SONG N, LI S P. Effect of drought on growth and water consumption of summer corn. Henan Water Conservancy and South-to-North Water Diversion, 2021, 50(6): 88-90. (in Chinese) | |
[38] | 张继波, 李楠, 邱粲, 薛晓萍. 水分临界期持续干旱胁迫对夏玉米光合生理与产量形成的影响. 干旱气象, 2021, 39(5): 734-741. |
ZHANG J B, LI N, QIU C, XUE X P. Effect of continuous drought stress during critical period of water on photosynthetic physiology and yield formation of summer maize. Journal of Arid Meteorology, 2021, 39(5): 734-741. (in Chinese) | |
[39] | 马赟花, 薛吉全, 张仁和, 张林春, 郝扬, 孙娟. 不同高产玉米品种干物质积累转运与产量形成的研究. 广东农业科学, 2010, 37(3): 36-40. |
MA Y H, XUE J Q, ZHANG R H, ZHANG L C, HAO Y, SUN J. Relationship between dry matter accumulation and distribution to yield of different maize cultivars. Guangdong Agriculture Science, 2010, 37(3): 36-40. (in Chinese) | |
[40] |
BASSU S, BRISSON N, DURAND J L, BOOTE K, LIZASO J, JONES J W, ROSENZWEIG C, RUANE A, ADAM M, BARON C, BASSO B, BIERNATH C, BOOGAARD H, CONIJN S, CORBEELS M, DERYNG D, SANCTIS G, GAYLER S, GRASSINI P, HATFIELD J, HOEK S, LZAURRALDE C, JONGSCHAAP R, KEMANIAN A, KERSEBAUM K, KIM S H, KUMAR N S, MAKOWSKI D, MULLER C, NENDEL C, PRIESACK E, PRAVIA M V, SAU F, SHCHERBAK I, TAO F, TEIXEIRA E, TIMLIN D, WAHA K. How do various maize crop models vary in their responses to climate change factors? Global Change Biology, 2014, 20(7): 2301-2320.
doi: 10.1111/gcb.12520 |
[41] | 李素美, 东先旺, 陈建华. 不同土壤目标含水量对夏玉米光合性能及产量的影响. 华北农学报, 1999(3): 55-59. |
LI S M, DONG X W, CHEN J H. Effect of different target water content in soil on photosynthetic property and yield of summer- sowing corn. Acta Agriculture Boreali-Sinica, 1999(3): 55-59. (in Chinese) | |
[42] | 杜彩艳, 段宗颜, 张乃明, 丘学礼, 胡万里, 陈安强, 付斌, 潘艳华, 余小芬, 陈拾华, 杨艳鲜. 云南主栽玉米品种抗旱性鉴定与评价. 干旱地区农业研究, 2015, 33(4): 181-189. |
DU C Y, DUAN Z Y, ZHANG N M, QIU X L, HU W L, CHEN A Q, FU B, PAN Y H, YU X F, CHEN S H, YANG Y X. Identification and evaluation of drought resistance in different maize varieties widely grown in Yunnan. Agricultural Research in the Arid Areas, 2015, 33(4): 181-189. (in Chinese) | |
[43] | 张保仁. 高温对玉米产量和品质的影响及调控研究[D]. 泰安: 山东农业大学, 2003. |
ZHANG B R. Studies on effect of high temperature on yield and quality and regulation in maize (Zea mays L.)[D]. Taian: Shandong Agricultural University, 2003. (in Chinese) | |
[44] | 白向历. 玉米抗旱机制及鉴定指标筛选的研究[D]. 沈阳: 沈阳农业大学, 2009. |
BAI X L. Study of drought resistance mechanism and identification parameters screening in maize[D]. Shenyang: Shenyang Agricultural University, 2009. (in Chinese) | |
[45] | 潘攀. H2O2和Ca2+/CaM参与了sHSP26保护的玉米叶绿体耐高温干旱复合胁迫[D]. 郑州: 河南农业大学, 2014. |
PAN P. H2O2 and Ca2+/CaM involving in sHSP26 protecting maize chloroplast from the combination of drought and heat stress[D]. Zhengzhou: Henan Agricultural University, 2014. (in Chinese) | |
[46] | 付景, 孙宁宁, 刘天学, 马俊峰, 杨豫龙, 赵霞, 穆心愿, 李潮海. 穗期高温对玉米子粒灌浆生理及产量的影响. 作物杂志, 2019(3): 118-125. |
FU J, SUN N N, LIU T X, MA J F, YANG Y L, ZHAO X, MU X Y, LI C H. The effects of high temperature at spike stage on grain- filling physiology and yield of maize. Crops, 2019(3): 118-125. (in Chinese) | |
[47] |
赵丽晓, 张萍, 王若男, 王璞, 陶洪斌. 花后前期高温对玉米强弱势籽粒生长发育的影响. 作物学报, 2014, 40(10): 1839-1845.
doi: 10.3724/SP.J.1006.2014.01839 |
ZHAO L X, ZHANG P, WANG R N, WANG P, TAO H B. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agronomica Sinica, 2014, 40(10): 1839-1845. (in Chinese)
doi: 10.3724/SP.J.1006.2014.01839 |
[1] | 尉亚囡, 薄其飞, 唐安, 高嘉瑞, 马田, 尉熊熊, 张方方, 周祥利, 岳善超, 李世清. 长期覆膜和施用有机肥对黄土高原春玉米产量和品质的效应[J]. 中国农业科学, 2023, 56(9): 1708-1717. |
[2] | 韩紫璇, 房静静, 武雪萍, 姜宇, 宋霄君, 刘晓彤. 长期秸秆配施化肥下土壤团聚体碳氮分布、微生物量与小麦产量的协同效应[J]. 中国农业科学, 2023, 56(8): 1503-1514. |
[3] | 刘梦洁, 梁飞, 李全胜, 田宇欣, 王国栋, 贾宏涛. 膜下滴灌与细流沟灌对玉米生长及产量的影响[J]. 中国农业科学, 2023, 56(8): 1515-1530. |
[4] | 王宁, 冯克云, 南宏宇, 丛安琪, 张铜会. 水分亏缺下有机无机肥配施比例对棉花水氮利用效率的影响[J]. 中国农业科学, 2023, 56(8): 1531-1546. |
[5] | 王鹏飞, 于爱忠, 王玉珑, 苏向向, 李悦, 吕汉强, 柴健, 杨宏伟. 绿肥还田结合减量施氮对玉米干物质积累分配及产量的影响[J]. 中国农业科学, 2023, 56(7): 1283-1294. |
[6] | 谷闻东, 刘春娟, 李邦, 刘畅, 周宇飞. 外源色氨酸对低氮胁迫下高粱苗期叶片碳氮平衡和衰老特性的影响[J]. 中国农业科学, 2023, 56(7): 1295-1310. |
[7] | 马胜兰, 况福虹, 林洪羽, 崔俊芳, 唐家良, 朱波, 蒲全波. 秸秆还田量对川中丘陵冬小麦-夏玉米轮作体系土壤物理特性的影响[J]. 中国农业科学, 2023, 56(7): 1344-1358. |
[8] | 南瑞, 杨玉存, 石芳慧, 张礼宁, 米彤茜, 张立强, 李春艳, 孙风丽, 奚亚军, 张超. 小麦源库优异种质的鉴定与源库类型的划分[J]. 中国农业科学, 2023, 56(6): 1019-1034. |
[9] | 常春义, 曹元, Ghulam Mustafa, 刘红艳, 张羽, 汤亮, 刘兵, 朱艳, 姚霞, 曹卫星, 刘蕾蕾. 白粉病对小麦光合特性的影响及病害严重度的定量模拟[J]. 中国农业科学, 2023, 56(6): 1061-1073. |
[10] | 李小勇, 黄威, 刘红菊, 李银水, 顾炽明, 代晶, 胡文诗, 杨璐, 廖星, 秦璐. 不同轮作模式下氮肥施用对油菜产量形成及养分利用的影响[J]. 中国农业科学, 2023, 56(6): 1074-1085. |
[11] | 汪月宁, 代红军, 贺琰, 魏强, 郭学良, 刘妍, 殷梦婷, 王振平. 基于转录组分析油菜素内酯对高温胁迫下酿酒葡萄花色苷合成及果实品质的调控机制[J]. 中国农业科学, 2023, 56(6): 1139-1153. |
[12] | 贾晓昀, 王士杰, 朱继杰, 赵红霞, 李妙, 王国印. 陆地棉高密度遗传图谱的构建及产量相关性状的QTL定位[J]. 中国农业科学, 2023, 56(4): 587-598. |
[13] | 刘娜, 谢畅, 黄海云, 姚瑞, 徐爽, 宋海玲, 于海秋, 赵新华, 王婧, 蒋春姬, 王晓光. 施钾量对花生根系和根瘤特性、养分吸收及产量的影响[J]. 中国农业科学, 2023, 56(4): 635-648. |
[14] | 刘丹, 安雨丽, 陶笑笑, 王孝忠, 吕典秋, 郭彦军, 陈新平, 张务帅. 西北地区制种玉米产量及氮素吸收对供氮水平的响应[J]. 中国农业科学, 2023, 56(3): 441-452. |
[15] | 赵建涛, 杨开鑫, 王旭哲, 马春晖, 张前兵. 施磷对苜蓿叶片生理参数及抗氧化能力的影响[J]. 中国农业科学, 2023, 56(3): 453-465. |
|