中国农业科学 ›› 2022, Vol. 55 ›› Issue (10): 1971-1986.doi: 10.3864/j.issn.0578-1752.2022.10.008
收稿日期:
2021-04-06
接受日期:
2021-06-24
出版日期:
2022-05-16
发布日期:
2022-06-02
通讯作者:
田霄鸿
作者简介:
吴天琪,E-mail: 基金资助:
WU TianQi(),LI YaFei,SHI JiangLan,NING Peng,TIAN XiaoHong(
)
Received:
2021-04-06
Accepted:
2021-06-24
Online:
2022-05-16
Published:
2022-06-02
Contact:
XiaoHong TIAN
摘要:
【目的】叶面喷锌(Zn)是提高小麦籽粒锌含量进而解决人体缺锌问题的有效农艺措施。探明不同施氮(N)量下叶面喷锌后小麦全粒及面粉中的富锌效果及对蛋白组分含量的影响。【方法】基于长期定位试验,于2018—2020年连续进行了两年裂区田间试验。以基施不同用量氮肥(N0、N120、N240,施N量分别为0、120、240 kg∙hm-2)为主区,副区为灌浆前期喷施锌肥处理(Zn0、Zn1,分别为喷H2O、喷0.4% ZnSO4·7H2O),测定了灌浆前期和成熟期各部位锌含量、叶片等营养器官中锌向籽粒的转移量及分配、籽粒和面粉中蛋白质及其组分含量。【结果】与N0相比,N120和N240处理籽粒产量显著提高,增幅达88%—114%,但N120和N240处理之间并无显著差异。叶面喷锌均能显著提高小麦籽粒和面粉锌含量且籽粒达富锌标准,而不受施氮量的影响,其中,N120、N240处理小麦籽粒锌含量分别比N0处理提高0.95和1.12倍。与N0相比,施用氮肥均提高了小麦灌浆前期叶片等营养器官中氮、锌向籽粒的转移量,但降低了二者的转移比例,其中氮转移比例由60.2%下降至48.6%,锌由55.4%下降至42.3%。无论喷锌与否,氮、锌向籽粒的转移量及成熟期籽粒中氮、锌含量均呈显著线性正相关,且喷锌时氮、锌协同效应更为显著。与灌浆前期相比,成熟期小麦籽粒和面粉中储藏蛋白(醇溶蛋白和谷蛋白)含量显著增加,约占蛋白含量的80%—84%。施氮对籽粒和面粉中醇溶蛋白和谷蛋白含量提升幅度高于清蛋白和球蛋白,且以谷蛋白最大,而喷锌不影响籽粒和面粉中蛋白质及其组分含量,但在Zn1条件下,施氮对籽粒和面粉中谷蛋白含量的提高幅度高于Zn0条件下,分别提升37.5%和38.1%。【结论】叶面喷锌能够实现籽粒富锌,但不影响籽粒和面粉中蛋白质及其组分含量,表明籽粒和面粉中存在足够的用于锌储存的蛋白质库。因此在潜在缺锌石灰性土壤上,通过合理施用氮肥结合小麦灌浆前期叶面喷锌,能在保证小麦高产稳产的同时提高籽粒氮、锌营养品质。
吴天琪,李雅菲,师江澜,宁鹏,田霄鸿. 基施氮肥及灌浆前期喷施锌肥对小麦籽粒富锌及蛋白组分含量的影响[J]. 中国农业科学, 2022, 55(10): 1971-1986.
WU TianQi,LI YaFei,SHI JiangLan,NING Peng,TIAN XiaoHong. Effects of Basal Nitrogen and Foliar Zinc Application at the Early Filling Stage on Zinc Enrichment and Protein Components Content in Wheat Grain[J]. Scientia Agricultura Sinica, 2022, 55(10): 1971-1986.
表1
基施氮肥及灌浆前期喷施锌肥对营养器官中氮向小麦籽粒转移的影响"
处理 Treatment | 2018—2019 | 2019—2020 | ||
---|---|---|---|---|
氮转移量 N mobilization (mg/plant) | 氮转移比例 N transfer ratio (%) | 氮转移量 N mobilization (mg/plant) | 氮转移比例 N transfer ratio (%) | |
N0Zn0 | 4.5±0.5 b | 53.6 | 3.7±0.3 c | 58.4 |
N120Zn0 | 13.4±2.3 a | 39.4 | 6.4±0.3 b | 47.2 |
N240Zn0 | 14.7±1.0 a | 41.9 | 9.9±0.9 a | 51.0 |
N0Zn1 | 4.6±0.8 b | 44.3 | 3.3±0.2c | 62.6 |
N120Zn1 | 11.9±0.7 a | 42.5 | 6.5±0.5 b | 57.5 |
N240Zn1 | 10.0±0.8 a | 14.7 | 9.3±1.4 a | 55.3 |
变异来源 | ||||
N | <0.001 | <0.001 | ||
Zn | 0.104 | 0.601 | ||
N×Zn | 0.281 | 0.882 |
表2
基施氮肥及灌浆前期喷施锌肥对营养器官中锌向小麦籽粒转移的影响"
处理 Treatment | 2018—2019 | 2019—2020 | ||
---|---|---|---|---|
锌转移量 Zn mobilization (×10-3 mg/plant) | 锌转移比例 Zn transfer ratio (%) | 锌转移量 Zn mobilization (×10-3 mg/plant) | 锌转移比例 Zn transfer ratio (%) | |
N0Zn0 | 3.5±0.1 c | 53.6 | 1.7±0.3 c | 41.2 |
N120Zn0 | 5.9±0.1 bc | 42.9 | 4.2±0.3 abc | 35.1 |
N240Zn0 | 4.6±0.4 bc | 34.3 | 3.2±1.3 bc | 38.4 |
N0Zn1 | 3.4±0.4 c | 48.9 | 2.1±0.5 c | 39.2 |
N120Zn1 | 15.3±0.5 a | 27.7 | 10.1±0.7 a | 23.7 |
N240Zn1 | 12.8±0.3 ab | 18.6 | 11.3±0.8 ab | 14.6 |
变异来源 | ||||
N | 0.042 | 0.014 | ||
Zn | 0.017 | 0.024 | ||
N×Zn | 0.226 | 0.245 |
[1] |
GIBSON R S. Zinc deficiency and human health: etiology, health consequences, and future solutions. Plant and Soil, 2012, 361(1/2): 291-299. doi: 10.1007/s11104-012-1209-4.
doi: 10.1007/s11104-012-1209-4 |
[2] | WHO: Vitamin and mineral nutrition information system,Geneva. World Health Organization, 2016, http://www.who.int. |
[3] |
HOTZ C, BROWN K. Assessment of the risk of deficiency in populations and options for its control. Food and Nutrition Bulletin, 2004, 25: 194-204.
doi: 10.1177/156482650402500213 |
[4] |
STEIN A J. Global impacts of human mineral malnutrition. Plant and Soil, 2010, 335(1/2): 133-154. doi: 10.1007/s11104-009-0228-2.
doi: 10.1007/s11104-009-0228-2 |
[5] |
DOKOOHAKI H, GHEYSARI M, MEHNATKESH A, AYOUBI S. Applying the CSM-CERES-Wheat model for rainfed wheat with specified soil characteristic in undulating area in Iran. Archives of Agronomy and Soil Science, 2015, 61(9): 1231-1245. doi: 10.1080/03650340.2014.984696.
doi: 10.1080/03650340.2014.984696 |
[6] |
HUANG T M, HUANG Q N, SHE X, MA X L, HUANG M, CAO H B, HE G, LIU J S, LIANG D L, MALHI S S, WANG Z H. Grain zinc concentration and its relation to soil nutrient availability in different wheat cropping regions of China. Soil and Tillage Research, 2019, 191: 57-65. doi: 10.1016/j.still.2019.03.019.
doi: 10.1016/j.still.2019.03.019 |
[7] |
CAKMAK I, KUTMAN U B. Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science, 2018, 69(1): 172-180. doi: 10.1111/ejss.12437.
doi: 10.1111/ejss.12437 |
[8] |
ZOU C, DU Y, RASHID A, RAM H, SAVASLI E, PIETERSE P J, ORTIZ-MONASTERIO I, YAZICI A, KAUR C, MAHMOOD K, SINGH S, LE ROUX M R, KUANG W, ONDER O, KALAYCI M, CAKMAK I. Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. Nitric Oxide, 2019, 67(29): 8096-8106. doi: 10.1021/acs.jafc.9b01829.
doi: 10.1021/acs.jafc.9b01829 |
[9] |
GRAHAM R D, WELCH R M, BOUIS H E. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods. Principles, perspectives and knowledge gaps. 2001, 70: 77-142. doi: 10.1016/S0065-2113(01)70004-1.
doi: 10.1016/S0065-2113(01)70004-1 |
[10] |
BOUIS H E, WELCH R M. Biofortification-A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science, 2010, 50: S-20. doi: 10.2135/cropsci2009.09.0531.
doi: 10.2135/cropsci2009.09.0531 |
[11] |
CAKMAK I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 2008, 302(1/2): 1-17. doi: 10.1007/s11104-007-9466-3.
doi: 10.1007/s11104-007-9466-3 |
[12] |
ZOU C Q, ZHANG Y Q, RASHID A, RAM H, SAVASLI E, ARISOY R Z, ORTIZ-MONASTERIO I, SIMUNJI S, WANG Z H, SOHU V, HASSAN M, KAYA Y, ONDER O, LUNGU O, MUJAHID M Y, JOSHI A K, ZELENSKIY Y, ZHANG F S, CAKMAK I. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant and Soil, 2012, 361(1/2): 119-130. doi: 10.1007/s11104-012-1369-2.
doi: 10.1007/s11104-012-1369-2 |
[13] |
李宏云, 王少霞, 李萌, 田霄鸿, 赵爱青, 国春慧. 不同水氮管理下锌与氮磷肥配合喷施对冬小麦锌营养品质的影响. 中国农业科学, 2014, 47(20): 4016-4026. doi: 10.3864/j.issn.0578-1752.2014.20.010.
doi: 10.3864/j.issn.0578-1752.2014.20.010 |
LI H Y, WANG S X, LI M, TIAN X H, ZHAO A Q, GUO C H. Effects of combined foliar Zn application with N or P under different water and nitrogen managements on Zn nutritional quality of winter wheat. Scientia Agricultura Sinica, 2014, 47(20): 4016-4026. doi: 10.3864/j.issn.0578-1752.2014.20.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.20.010 |
|
[14] |
王少霞, 李萌, 田霄鸿, 陈艳龙, 李硕, 刘珂, 贾舟. 锌与氮磷钾配合喷施对小麦锌累积、分配及转移的影响. 植物营养与肥料学报, 2018, 24(2): 296-305. doi: 10.11674/zwyf.17178.
doi: 10.11674/zwyf.17178 |
WANG S X, LI M, TIAN X H, CHEN Y L, LI S, LIU K, JIA Z. Effects of combined foliar application of Zn with N, P, or K on Zn accumulation, distribution and translocation in wheat. Plant Nutrition and Fertilizer Science, 2018, 24(2): 296-305. doi: 10.11674/zwyf.17178. (in Chinese)
doi: 10.11674/zwyf.17178 |
|
[15] |
AZIZ M Z, YASEEN M, ABBAS T, NAVEED M, MUSTAFA A, HAMID Y, SAEED Q, XU M G. Foliar application of micronutrients enhances crop stand, yield and the biofortification essential for human health of different wheat cultivars. Journal of Integrative Agriculture, 2019, 18(6): 1369-1378. doi: 10.1016/S2095-3119(18)62095-7.
doi: 10.1016/S2095-3119(18)62095-7 |
[16] |
ERENOGLU E B, KUTMAN U B, CEYLAN Y, YILDIZ B, CAKMAK I. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc ((65) Zn) in wheat. The New Phytologist, 2011, 189(2): 438-448. doi: 10.1111/j.1469-8137.2010.03488.x.
doi: 10.1111/j.1469-8137.2010.03488.x. |
[17] |
CHEN X P, ZHANG Y Q, TONG Y P, XUE Y F, LIU D Y, ZHANG W, DENG Y, MENG Q F, YUE S C, YAN P, CUI Z L, SHI X J, GUO S W, SUN Y X, YE Y L, WANG Z H, JIA L L, MA W Q, HE M R, ZHANG X Y, KOU C L, LI Y T, TAN D S, CAKMAK I, ZHANG F S, ZOU C Q. Harvesting more grain zinc of wheat for human health. Scientific Reports, 2017, 7: 7016. doi: 10.1038/s41598-017-07484-2.
doi: 10.1038/s41598-017-07484-2 |
[18] |
XIA H Y, XUE Y F, LIU D Y, KONG W L, XUE Y H, TANG Y Y, LI J, LI D, MEI P P. Rational application of fertilizer nitrogen to soil in combination with foliar Zn spraying improved Zn nutritional quality of wheat grains. Frontiers in Plant Science, 2018, 9: 677. doi: 10.3389/fpls.2018.00677.
doi: 10.3389/fpls.2018.00677 |
[19] |
PASCOALINO J A L, THOMPSON J A, WRIGHT G, FRANCO F A, SCHEEREN P L, PAULETTI V, MORAES M F, WHITE P J. Grain zinc concentrations differ among Brazilian wheat genotypes and respond to zinc and nitrogen supply. PLoS One, 2018, 13(7): e0199464. doi: 10.1371/journal.pone.0199464.
doi: 10.1371/journal.pone.0199464 |
[20] |
WATERS B M, UAUY C, DUBCOVSKY J, GRUSAK M A. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Experimental Botany, 2009, 60(15): 4263-4274. doi: 10.1093/jxb/erp257.
doi: 10.1093/jxb/erp257 |
[21] |
DISTELFELD A, CAKMAK I, PELEG Z, OZTURK L, YAZICI A M, BUDAK H, SARANGA Y, FAHIMA T. Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiologia Plantarum, 2007, 129(3): 635-643. doi: 10.1111/j.1399-3054.2006.00841.x.
doi: 10.1111/j.1399-3054.2006.00841.x. |
[22] |
CAKMAK I, KALAYCI M, KAYA Y, TORUN A A, AYDIN N, WANG Y, ARISOY Z, ERDEM H, YAZICI A, GOKMEN O, OZTURK L, HORST W J. Biofortification and localization of zinc in wheat grain. Journal of Agricultural and Food Chemistry, 2010, 58(16): 9092-9102. doi: 10.1021/jf101197h.
doi: 10.1021/jf101197h |
[23] |
KUTMAN U B, KUTMAN B Y, CEYLAN Y, OVA E A, CAKMAK I. Contributions of root uptake and remobilization to grain zinc accumulation in wheat depending on post-anthesis zinc availability and nitrogen nutrition. Plant and Soil, 2012, 361(1/2): 177-187. doi: 10.1007/s11104-012-1300-x.
doi: 10.1007/s11104-012-1300-x |
[24] |
VELU G, ORTIZ-MONASTERIO I, CAKMAK I, HAO Y, SINGH R P. Biofortification strategies to increase grain zinc and iron concentrations in wheat. Journal of Cereal Science, 2014, 59(3): 365-372. doi: 10.1016/j.jcs.2013.09.001.
doi: 10.1016/j.jcs.2013.09.001 |
[25] |
DIONISIO G, UDDIN M N, VINCZE E. Enrichment and identification of the most abundant zinc binding proteins in developing barley grains by zinc-IMAC capture and nano LC-MS/MS. Proteomes, 2018, 6(1): 3. doi: 10.3390/proteomes6010003.
doi: 10.3390/proteomes6010003 |
[26] |
PERSSON D P, DE BANG T C, PEDAS P R, KUTMAN U B, CAKMAK I, ANDERSEN B, FINNIE C, SCHJOERRING J K, HUSTED S. Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. The New Phytologist, 2016, 211(4): 1255-1265. doi: 10.1111/nph.13989.
doi: 10.1111/nph.13989 |
[27] |
PECK A W, MCDONALD G K, GRAHAM R D. Zinc nutrition influences the protein composition of flour in bread wheat (Triticum aestivum L.). Journal of Cereal Science, 2008, 47(2): 266-274. doi: 10.1016/j.jcs.2007.04.006.
doi: 10.1016/j.jcs.2007.04.006 |
[28] |
董明, 王琪, 周琴, 蔡剑, 王笑, 戴廷波, 姜东. 花后5天喷施锌肥有效提高小麦籽粒营养和加工品质. 植物营养与肥料学报, 2018, 24(1): 63-70. doi: 10.11674/zwyf.17106.
doi: 10.11674/zwyf.17106 |
DONG M, WANG Q, ZHOU Q, CAI J, WANG X, DAI T B, JIANG D. Efficient promotion of the nutritional and processing quality of wheat grain by Zn forliar spraying at 5 days after anthesis. Plant Nutrition and Fertilizer Science, 2018, 24(1): 63-70. doi: 10.11674/zwyf.17106. (in Chinese)
doi: 10.11674/zwyf.17106 |
|
[29] |
HE L, QY W, RENGEL Z, ZHAO P. Zinc fertilization alters flour protein composition of winter wheat genotypes varying in gluten content. Plant, Soil and Environment, 2016, 61(No.5): 195-200. doi: 10.17221/817/2014-pse.
doi: 10.17221/817/2014-pse |
[30] |
BROADLEY M R, WHITE P J, HAMMOND J P, ZELKO I, LUX A. Zinc in plants. New Phytologist, 2007, 173: 677-702. doi: 10.1111/j.1469-8137.2007.01996.
doi: 10.1111/j.1469-8137.2007.01996 |
[31] |
DOOLETTE C L, READ T L, LI C, SCHECKEL K G, DONNER E, KOPITTKE P M, SCHJOERRING J K, LOMBI E. Foliar application of zinc sulphate and zinc EDTA to wheat leaves: differences in mobility, distribution, and speciation. Journal of Experimental Botany, 2018, 69(18): 4469-4481. doi: 10.1093/jxb/ery236.
doi: 10.1093/jxb/ery236 |
[32] |
HAUG W, LANTZSCH H J. Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture, 1983, 34(12): 1423-1426. doi: 10.1002/jsfa.2740341217.
doi: 10.1002/jsfa.2740341217 |
[33] |
WANG Z M, LIU Q, PAN F, YUAN L X, YIN X B. Effects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheat. Field Crops Research, 2015, 184: 58-64. doi: 10.1016/j.fcr.2015.09.007.
doi: 10.1016/j.fcr.2015.09.007 |
[34] | 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000. |
BAO S D . Soil and Agricultural Chemistry Analysis. Beijing: Chinese Agriculture Press, 2000. (in Chinese) | |
[35] |
MILLER L V, KREBS N F, HAMBIDGE K M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. The Journal of Nutrition, 2007, 137(1): 135-141. doi: 10.1093/jn/137.1.135.
doi: 10.1093/jn/137.1.135 |
[36] |
赖学华, 丁建国, 赵晶, 郭蔼光. 不同栽培模式下小麦灌浆期蛋白质周转研究. 西北植物学报, 2005, 25(8): 1574-1578. doi: 10.3321/j.issn:1000-4025.2005.08.014.
doi: 10.3321/j.issn:1000-4025.2005.08.014 |
LAI X H, DING J G, ZHAO J, GUO A G. Protein turnover of wheat in different planting modes at the kernel-filling stage. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(8): 1574-1578. doi: 10.3321/j.issn:1000-4025.2005.08.014. (in Chinese)
doi: 10.3321/j.issn:1000-4025.2005.08.014 |
|
[37] |
熊淑萍, 王小纯, 李春明, 马新明, 杜少勇, 张营武, 蔺世召. 冬小麦根系时空分布动态及产量对不同氮源配施的响应. 植物生态学报, 2011, 35(7): 759-768. doi: 10.3724/SP.J.1258.2011.00759.
doi: 10.3724/SP.J.1258.2011.00759 |
XIONG S P, WANG X C, LI C M, MA X M, DU S Y, ZHANG Y W, LIN S Z. Responses of the spatial-temporal distribution of winter wheat (Triticum aestivum) roots and yield to different ratios of nitrogen sources. Chinese Journal of Plant Ecology, 2011, 35(7): 759-768. doi: 10.3724/SP.J.1258.2011.00759. (in Chinese)
doi: 10.3724/SP.J.1258.2011.00759 |
|
[38] |
KUTMAN U B, YILDIZ B, OZTURK L, CAKMAK I. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chemistry Journal, 2010, 87(1): 1-9. doi: 10.1094/cchem-87-1-0001.
doi: 10.1094/cchem-87-1-0001 |
[39] |
ANDRESEN E, PEITER E, KÜPPER H. Trace metal metabolism in plants. Journal of Experimental Botany, 2018, 69(5): 909-954. doi: 10.1093/jxb/erx465.
doi: 10.1093/jxb/erx465 |
[40] |
XUE Y F, YUE S C, ZHANG Y Q, CUI Z L, CHEN X P, YANG F C, CAKMAK I, MCGRATH S P, ZHANG F S, ZOU C Q. Grain and shoot zinc accumulation in winter wheat affected by nitrogen management. Plant and Soil, 2012, 361(1/2): 153-163. doi: 10.1007/s11104-012-1510-2.
doi: 10.1007/s11104-012-1510-2 |
[41] |
杨习文, 宋淼, 李秋杰, 周苏玫, 韩少宇, 陈旭, 徐利利, 贺德先. 氮锌配施对小麦锌转运、分配与累积的影响. 应用生态学报, 2020, 31(1): 148-156. doi: 10.13287/j.1001-9332.202001.027.
doi: 10.13287/j.1001-9332.202001.027 |
YANG X W, SONG M, LI Q J, ZHOU S M, HAN S Y, CHEN X, XU L L, HE D X. Impacts of combined N and Zn application on Zn translocation, partitioning, and accumulation in Triticum aestivum. Chinese Journal of Applied Ecology, 2020, 31(1): 148-156. doi: 10.13287/j.1001-9332.202001.027. (in Chinese)
doi: 10.13287/j.1001-9332.202001.027 |
|
[42] |
PEARSON J N, JENNER C F, RENGEL Z, GRAHAM R D. Differential transport of Zn, Me and sucrose along the longitudinal axis of developing wheat grains. Physiologia Plantarum, 1996, 97(2): 332-338. doi: 10.1034/j.1399-3054.1996.970217.x.
doi: 10.1034/j.1399-3054.1996.970217.x. |
[43] |
陈娟, 王少霞, 田霄鸿, 陈艳龙, 朱文玲, 李秀双, 刘珂, 杨畅. 锌与农药配合喷施对小麦锌累积分配及转移的影响. 西北农林科技大学学报(自然科学版), 2019, 47(3): 67-76. doi: 10.13207/j.cnki.jnwafu.2019.03.010.
doi: 10.13207/j.cnki.jnwafu.2019.03.010 |
CHEN J, WANG S X, TIAN X H, CHEN Y L, ZHU W L, LI X S, LIU K, YANG C. Effect of combined foliar application of zinc and pesticides on accumulation, distribution and transfer of zinc in wheat. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(3): 67-76. doi: 10.13207/j.cnki.jnwafu.2019.03.010. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2019.03.010 |
|
[44] |
WANG X Z, LIU D Y, ZHANG W, WANG C J, CAKMAK I, ZOU C Q. An effective strategy to improve grain zinc concentration of winter wheat, Aphids prevention and farmers’ income. Field Crops Research, 2015, 184: 74-79. doi: 10.1016/j.fcr.2015.08.015.
doi: 10.1016/j.fcr.2015.08.015 |
[45] |
WANG S X, SUN N H, YANG S, TIAN X H, LIU Q. The effectiveness of foliar applications of different zinc source and urea to increase grain zinc of wheat grown under reduced soil nitrogen supply. Journal of Plant Nutrition, 2021, 44(5): 644-659. doi: 10.1080/01904167.2020.1849286.
doi: 10.1080/01904167.2020.1849286 |
[46] |
LI M, WANG S X, TIAN X H, ZHAO J H, LI H Y, GUO C H, CHEN Y L, ZHAO A Q. Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P. Journal of Cereal Science, 2015, 61: 26-32. doi: 10.1016/j.jcs.2014.09.009.
doi: 10.1016/j.jcs.2014.09.009 |
[47] |
GONZALEZ D, ALMENDROS P, OBRADOR A, ALVAREZ J M. Zinc application in conjunction with urea as a fertilization strategy for improving both nitrogen use efficiency and the zinc biofortification of barley. Journal of the Science of Food and Agriculture, 2019, 99(9): 4445-4451. doi: 10.1002/jsfa.9681.
doi: 10.1002/jsfa.9681 |
[48] |
LI M, WANG S X, TIAN X H, HUANG Y P. Improving nutritional quality of wheat grain through foliar zinc combined with macronutrients. Agronomy Journal, 2018, 110(1): 38-46. doi: 10.2134/agronj2017.08.0437.
doi: 10.2134/agronj2017.08.0437 |
[49] |
DOOLETTE C L, READ T L, HOWELL N R, CRESSWELL T, LOMBI E. Zinc from foliar-applied nanoparticle fertiliser is translocated to wheat grain: a 65Zn radiolabelled translocation study comparing conventional and novel foliar fertilisers. Science of the Total Environment, 2020, 749: 142369. doi: 10.1016/j.scitotenv.2020.142369.
doi: 10.1016/j.scitotenv.2020.142369 |
[50] |
WIESER H, SEILMEIER W. The influence of nitrogen fertilisation on quantities and proportions of different protein types in wheat flour. Journal of the Science of Food and Agriculture, 1998, 76(1): 49-55. doi: 10.1002/(sici)1097-0010(199801)76:1<49:aid-jsfa950>3.0.co;2-2.
doi: 10.1002/(sici)1097-0010(199801)76:1<49:aid-jsfa950>3.0.co;2-2 |
[51] |
GOESAERT H, BRIJS K, VERAVERBEKE W S, COURTIN C M, GEBRUERS K, DELCOUR J A. Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends in Food Science & Technology, 2005, 16(1/2/3): 12-30. doi: 10.1016/j.tifs.2004.02.011.
doi: 10.1016/j.tifs.2004.02.011 |
[52] | 赵鹏, 杨帆, 睢福庆, 王巧燕. 氮锌配施对冬小麦氮利用、产量及籽粒蛋白质含量的影响. 中国农业大学学报, 2013, 18(3): 28-33. |
ZHAO P, YANG F, SUI F Q, WANG Q Y. Effect of combined application of Zn and N fertilizers on nitrogen use, grain yield and protein content in winter wheat. Journal of China Agricultural University, 2013, 18(3): 28-33. (in Chinese) | |
[53] |
TRIBOI E. Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content. Journal of Experimental Botany, 2003, 54(388): 1731-1742. doi: 10.1093/jxb/erg183.
doi: 10.1093/jxb/erg183 |
[54] |
DIER M, HÜTHER L, SCHULZE W X, ERBS M, KÖHLER P, WEIGEL H J, MANDERSCHEID R, ZÖRB C. Elevated atmospheric CO2 concentration has limited effect on wheat grain quality regardless of nitrogen supply. Journal of Agricultural and Food Chemistry, 2020, 68(12): 3711-3721. doi: 10.1021/acs.jafc.9b07817.
doi: 10.1021/acs.jafc.9b07817 |
[55] |
ROSSMANN A, BUCHNER P, SAVILL G P, POWERS S J, HAWKESFORD M J, MÜHLING K H. Foliar N application at anthesis stimulates gene expression of grain protein fractions and alters protein body distribution in winter wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry, 2019, 67(46): 12709-12719. doi: 10.1021/acs.jafc.9b04634.
doi: 10.1021/acs.jafc.9b04634 |
[56] | 石玉, 张永丽, 于振文. 施氮量对不同品质类型小麦子粒蛋白质组分含量及加工品质的影响. 植物营养与肥料学报, 2010, 16(1): 33-40. |
SHI Y, ZHANG Y L, YU Z W. Effects of nitrogen fertilization on protein components contents and processing quality of different wheat genotypes. Plant Nutrition and Fertilizer Science, 2010, 16(1): 33-40. (in Chinese) | |
[57] |
MARTRE P, PORTER J R, JAMIESON P D, TRIBOÏ E. Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiology, 2003, 133(4): 1959-1967. doi: 10.1104/pp.103.030585.
doi: 10.1104/pp.103.030585 |
[58] |
GIULIANI M M, GIUZIO L, DE CARO A, FLAGELLA Z. Relationships between nitrogen utilization and grain technological quality in durum wheat: I. nitrogen translocation and nitrogen use efficiency for protein. Agronomy Journal, 2011, 103(5): 1487-1494. doi: 10.2134/agronj2011.0153.
doi: 10.2134/agronj2011.0153 |
[59] |
SHEWRY P R, MITCHELL R A C, TOSI P, WAN Y F, UNDERWOOD C, LOVEGROVE A, FREEMAN J, TOOLE G A, MILLS E N C, WARD J L. An integrated study of grain development of wheat (cv. Hereward). Journal of Cereal Science, 2012, 56(1): 21-30. doi: 10.1016/j.jcs.2011.11.007.
doi: 10.1016/j.jcs.2011.11.007 |
[60] |
GUPTA R B, MASCI S, LAFIANDRA D, BARIANA H S, MACRITCHIE F. Accumulation of protein subunits and their polymers in developing grains of hexaploid wheats. Journal of Experimental Botany, 1996, 47(9): 1377-1385. doi: 10.1093/jxb/47.9.1377.
doi: 10.1093/jxb/47.9.1377 |
[61] |
TAO Z Q, WANG D M, CHANG X H, WANG Y J, YANG Y S, ZHAO G C. Effects of zinc fertilizer and short-term high temperature stress on wheat grain production and wheat flour proteins. Journal of Integrative Agriculture, 2018, 17(9): 1979-1990. doi: 10.1016/S2095-3119(18)61911-2.
doi: 10.1016/S2095-3119(18)61911-2 |
[62] |
WANG Y X, SPECHT A, HORST W J. Stable isotope labelling and zinc distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals zinc transport barriers during grain filling in wheat. The New Phytologist, 2011, 189(2): 428-437. doi: 10.1111/j.1469-8137.2010.03489.x.
doi: 10.1111/j.1469-8137.2010.03489.x. |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[5] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[6] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[7] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[8] | 刘硕,张慧,高志源,许吉利,田汇. 437个小麦品种钾收获指数的变异特征[J]. 中国农业科学, 2022, 55(7): 1284-1300. |
[9] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[10] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[11] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[12] | 蔡苇荻,张羽,刘海燕,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于成像高光谱的小麦冠层白粉病早期监测方法[J]. 中国农业科学, 2022, 55(6): 1110-1126. |
[13] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
[14] | 马鸿翔, 王永刚, 高玉姣, 何漪, 姜朋, 吴磊, 张旭. 小麦抗赤霉病育种回顾与展望[J]. 中国农业科学, 2022, 55(5): 837-855. |
[15] | 冯子恒,宋莉,张少华,井宇航,段剑钊,贺利,尹飞,冯伟. 基于无人机多光谱和热红外影像信息融合的小麦白粉病监测[J]. 中国农业科学, 2022, 55(5): 890-906. |
|