中国农业科学 ›› 2022, Vol. 55 ›› Issue (6): 1064-1081.doi: 10.3864/j.issn.0578-1752.2022.06.002
职蕾1(),者理1,孙楠楠1,杨阳1,Dauren Serikbay1,2,贾汉忠3,胡银岗1,陈亮1()
收稿日期:
2021-09-18
接受日期:
2021-11-16
出版日期:
2022-03-16
发布日期:
2022-03-25
通讯作者:
陈亮
作者简介:
职蕾,E-mail: 基金资助:
ZHI Lei1(),ZHE Li1,SUN NanNan1,YANG Yang1,Dauren Serikbay1,2,JIA HanZhong3,HU YinGang1,CHEN Liang1()
Received:
2021-09-18
Accepted:
2021-11-16
Online:
2022-03-16
Published:
2022-03-25
Contact:
Liang CHEN
摘要:
【目的】随着工业化的推进,重金属尤其是铅对耕地的污染已成为世界性问题。小麦作为主要粮食作物,其健康生产对保障粮食安全意义重大,筛选铅耐受性强和铅低积累小麦品种、挖掘相关调控基因或QTL区间,为耐铅种质创新和揭示小麦铅耐受性遗传机制奠定基础。【方法】采用140 mg·kg-1的硝酸铅溶液对102份小麦品种(系)进行苗期胁迫试验,以3个重复下的最大根长、根生物量和生长速率的耐铅系数的加权隶属函数值(D值)来评价小麦对铅的耐受性。结合小麦660K SNP芯片的335 438个高质量SNP标记对小麦铅耐受性进行全基因组关联分析(genome-wide association study,GWAS),挖掘铅耐受性候选基因。【结果】小麦品种(系)之间的铅耐受性表现出丰富的变异,变异系数为44.8%—46.2%,相关系数介于0.87—0.97(P<0.001);铅耐受性强的品种呈现出铅低积累特性。基因分型结果显示SNP多态性信息含量(polymorphic information content,PIC)为0.28—0.32,群体结构分析将供试材料分为7个亚群;2种GWAS分析方法共检测到20个与小麦铅耐受性显著关联的SNP(P≤0.001)和8个候选区间,分别分布在1B、2A、2D、3A、3B、5A和7A染色体上,单个位点可解释15.33%—19.75%的表型变异,其中10个位点和8个候选区间在2个及以上环境被检测到。分析稳定检测的显著关联位点及区间的候选基因,发现其功能主要与跨膜运输、蛋白修饰以及氧化应激反应有关,包括7个与转运蛋白相关基因(TraesCS1B02G433800、TraesCS7A02G118800、TraesCS7A02G117900等)、2个与泛素化与去泛素化相关的候选基因(TraesCS2A02G550900和TraesCS7A02G477300)、3个跨膜蛋白基因(TraesCS2D02G570500、TraesCS3B02G039900和TraesCS3B02G466000)和1个过氧化物酶相关的候选基因(TraesCS7A02G474200)。【结论】筛选出铅耐受性强的种质材料7份,检测到与小麦铅耐受性显著关联的20个SNP位点及8个候选区间,筛选出13个与小麦铅耐受性相关的候选基因。
职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081.
ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage[J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
表1
3个重复中102份小麦铅耐受性加权隶属函数值(D值)的统计分析"
重复 Repeat | 均值±标准差 Mean±SD | 变幅 Range | 变异系数 CV | 相关系数 Correlation coefficient | 遗传力 H2 (%) | |||
---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D_Mean | |||||
D1 | 0.157±0.072 | 0.034—0.331 | 45.64 | 1 | 0.92*** | 0.87*** | 0.96*** | 88.9 |
D2 | 0.162±0.073 | 0.022—0.303 | 44.80 | 1 | 0.90*** | 0.97*** | ||
D3 | 0.185±0.085 | 0.415—0.185 | 46.20 | 1 | 0.96*** | |||
D_Mean | 0.168±0.075 | 0.029—0.342 | 44.85 | 1 |
表2
102份小麦材料中筛选出的耐铅性强的种质"
名称 Name | 最大根长耐铅系数 Relative maximum root length | 根生物量耐铅系数 Relative root biomass | 生长速率耐铅系数 Relative growth rate | D值 D value |
---|---|---|---|---|
西农794 Xinong 794 | 0.654 | 1.190 | 1.115 | 0.34 |
子麦603 Zimai 603 | 0.775 | 1.324 | 0.804 | 0.34 |
旱优98 Hanyou 98 | 0.406 | 1.280 | 1.464 | 0.33 |
洛旱7号Luohan 7 | 0.593 | 1.500 | 0.961 | 0.33 |
山农24号Shannong 24 | 0.499 | 1.809 | 0.861 | 0.32 |
中新78 Zhongxin 78 | 0.536 | 1.546 | 0.941 | 0.32 |
长6878 Chang 6878 | 0.648 | 1.676 | 0.541 | 0.30 |
表3
SNP标记的分布、物理图谱长度及其多态性"
染色体 Chromosome | SNP数目 No. of markers | 长度 Length (Mb) | SNP标记密度 Density of SNP | 遗传多样性 Genetic diversity | 多态信息含量 PIC |
---|---|---|---|---|---|
1A | 17217 | 594.02 | 0.03 | 0.38 | 0.30 |
1B | 21487 | 689.81 | 0.03 | 0.40 | 0.31 |
1D | 8098 | 495.31 | 0.06 | 0.38 | 0.30 |
2A | 25429 | 780.77 | 0.03 | 0.38 | 0.30 |
2B | 24508 | 801.26 | 0.03 | 0.41 | 0.32 |
2D | 8441 | 651.82 | 0.08 | 0.40 | 0.31 |
3A | 14081 | 750.73 | 0.05 | 0.41 | 0.32 |
3B | 43683 | 830.65 | 0.02 | 0.38 | 0.30 |
3D | 5548 | 651.49 | 0.12 | 0.36 | 0.30 |
4A | 14465 | 744.54 | 0.05 | 0.39 | 0.31 |
4B | 12101 | 673.47 | 0.06 | 0.34 | 0.28 |
4D | 2563 | 509.85 | 0.20 | 0.39 | 0.31 |
5A | 19762 | 709.76 | 0.04 | 0.39 | 0.31 |
5B | 30304 | 713.02 | 0.02 | 0.40 | 0.32 |
5D | 5799 | 565.72 | 0.10 | 0.39 | 0.31 |
6A | 15159 | 618.00 | 0.04 | 0.40 | 0.31 |
6B | 21651 | 720.95 | 0.03 | 0.39 | 0.31 |
6D | 5253 | 473.56 | 0.09 | 0.38 | 0.30 |
7A | 18154 | 736.69 | 0.01 | 0.40 | 0.31 |
7B | 14434 | 750.61 | 0.05 | 0.40 | 0.32 |
7D | 7304 | 638.55 | 0.09 | 0.39 | 0.31 |
A基因组A genome | 124264 | 4934.69 | 0.02 | 0.39 | 0.31 |
B基因组B genome | 168168 | 5179.77 | 0.03 | 0.39 | 0.31 |
D基因组D genome | 43006 | 3986.30 | 0.09 | 0.38 | 0.30 |
总计Total | 335438 | 14100.76 | 0.05 | 0.39 | 0.31 |
表4
GWAS检测到的小麦铅耐受性显著相关SNP位点"
标记 Marker | 染色体 Chromosome | 物理位置 Position (bp) | 环境 Environment | P值 P value | 贡献率 R2 (%) |
---|---|---|---|---|---|
AX-110941745 | 2A | 756492456 | D3 | 6.42E-04 | 19.39 |
AX-109277543 | 2A | 757112239 | D1/D2/BLUE | 8.07E-04-8.22E-04 | 15.61—18.62 |
AX173574354 | 2D | 635801642 | D2/BLUE | 9.63E-04 | 15.33 |
AX-110445716 | 2D | 637991458 | D1/D2/BLUE | 5.55E-04-7.79E-04 | 18.76 |
AX-110075544 | 2D | 638134169 | D1/BLUE | 7.88E-04 | 15.89 |
AX-109814994 | 2D | 638145007 | D1 | 9.92E-04 | 18.22 |
AX-108894641 | 2D | 638369283 | D1/D2/BLUE | 3.56E-04-7.98E-04 | 18.69—18.75 |
AX-109811534 | 2D | 639095540 | D2/BLUE | 8.24E-04 | 15.78 |
AX-108776369 | 2D | 639356626 | D1/D2/BLUE | 3.93E-04-6.26E-04 | 16.36—17.57 |
AX-109916952 | 3A | 516295407 | D1 | 9.76E-04 | 18.26 |
AX-110613628 | 3A | 516540778 | D1/D2 | 6.61E-04-1.00E-03 | 18.11—19.27 |
AX-110631665 | 3B | 20320827 | D1/D2/D3 | 4.09E-04-7.54E-04 | 17.24—16.03 |
AX-174247868 | 3B | 31796612 | D1/D2 | 5.50E-04-8.29E-04 | 18.59—19.75 |
AX-109552715 | 3B | 31814415 | D1/D3 | 8.86E-04-9.51E-04 | 15.47—15.61 |
AX-109352323 | 3B | 31815501 | D1/D3 | 8.86E-04-9.51E-04 | 15.47—15.61 |
AX-109857484 | 5A | 20357196 | D3 | 2.22E-04 | 19.02 |
AX-111777618 | 5A | 553255290 | D3 | 7.80E-04 | 18.89 |
AX-110426494 | 5B | 678333807 | D1 | 8.95E-04 | 18.48 |
AX-109372076 | 7A | 670816415 | D1/D2/BLUE | 3.70E-04-5.41E-04 | 16.71—17.72 |
AX-110625465 | 7A | 671418037 | D2/BLUE | 8.55E-04 | 15.62 |
表5
FarmCPU检测到的小麦铅耐受性显著相关的区间"
区间 Region | 染色体 Chr. | 物理位置 Position (Mb) | 环境 Environment | 标记数目 No. of markers | P值 P value | 效应值 Effect |
---|---|---|---|---|---|---|
Pb_nwafu-1 | 1B | 658.54—660.72 | D1/D2/BLUP | 5 | 4.32E-04—6.47E-04 | -0.03—0.30 |
Pb_nwafu-2 | 2A | 756.11—757.95 | D1/D2/D3/BLUP | 77 | 2.36E-05—9.88E-04 | -0.04—0.04 |
Pb_nwafu-3 | 2D | 637.99—639.36 | D1/D2/D3/BLUP | 29 | 2.36E-05—9.88E-04 | -0.06—0.06 |
Pb_nwafu-4 | 3B | 17.80—21.96 | D1/D2/D3/BLUP | 27 | 5.40E-05—9.40E-04 | -0.06—0.06 |
Pb_nwafu-5 | 3B | 708.94—717.31 | D1/D2/D3/BLUP | 38 | 2.65E-04—9.94E-04 | -0.05—0.03 |
Pb_nwafu-6 | 5B | 677.71—678.33 | D1/D2/D3/BLUP | 5 | 1.45E-04—8.92E-04 | -0.03—0.04 |
Pb_nwafu-7 | 7A | 669.73—671.42 | D1/D2/D3/BLUP | 15 | 5.81E-05—9.95E-04 | -0.04—0.03 |
Pb_nwafu-8 | 7D | 75.08—76.94 | D1/D2/D3/BLUP | 5 | 2.72E-04—9.09E-04 | -0.04—0.04 |
表6
筛选获得候选基因信息"
位点&区间 Marker & Region | 染色体 Chr. | 物理位置 Position (bp) | 基因 Gene | 基因注释或编码蛋白 Gene annotation or coding protein |
---|---|---|---|---|
Pb_nwafu-1 | 1B | 658491409 | TraesCS1B02G433800 | 多药耐药ABC转运蛋白家族蛋白 Multidrug resistance ABC transporter family protein |
Pb_nwafu-2 | 2A | 757947993 | TraesCS2A02G550900 | 组蛋白H2A去泛素酶Histone H2A deubiquitylase |
Pb_nwafu-3 | 2D | 637522624 | TraesCS2D02G570500 | 跨膜蛋白Transmembrane protein |
Pb_nwafu-4 | 3B | 19263438 | TraesCS3B02G039900 | 跨膜蛋白Transmembrane protein |
Pb_nwafu-4 | 3B | 20348050 | TraesCS3B02G040900 | 金属耐受蛋白Metal tolerance protein |
Pb_nwafu-5 | 3B | 708516550 | TraesCS3B02G466000 | 跨膜蛋白Transmembrane protein |
Pb_nwafu-6 | 7A | 669727531 | TraesCS7A02G474200 | 过氧化物酶Peroxidase |
Pb_nwafu-7 | 7A | 670959602 | TraesCS7A02G477300 | 泛素结合因子E4 Ubiquitin conjugation factor E4 |
Pb_nwafu-8 | 7A | 76192150 | TraesCS7A02G117900 | ABC转运蛋白C家族蛋白ABC transporter C family protein |
Pb_nwafu-8 | 7A | 76486026 | TraesCS7A02G118800 | ABC转运因子ABC transporter |
Pb_nwafu-8 | 7A | 76498276 | TraesCS7A02G118900 | ABC转运因子ABC transporter |
Pb_nwafu-8 | 7A | 76938327 | TraesCS7A02G119300 | ABC转运因子ABC transporter |
AX-108894641 | 2D | 638143208 | TraesCS2D02G572000 | 转运蛋白Transport protein |
[1] |
ZHAO F J, Ma Y B, ZHU Y G, TANG Z, McGrath S P. Soil contamination in China: Current status and mitigation strategies. Environmental Science & Technology, 2015,49(2):750-759.
doi: 10.1021/es5047099 |
[2] |
WILLIAMS P N, LEI M, SUN G X, HUANG Q, LU Y, DEACON C, MEHARG A A, ZHU Y G. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environmental Science & Technology, 2009,43(3):637-642.
doi: 10.1021/es802412r |
[3] |
ZHUANG P, MCBRIDE M B, XIA H P, LI N Y, LIA Z A. Health risk from heavy metals via consumption of food crops in the vicinity of dabaoshan mine, south China. Science of the Total Environment, 2009,407(5):1551-1561.
doi: 10.1016/j.scitotenv.2008.10.061 |
[4] | 徐长春, 熊炜, 郑戈, 林友华. “农业面源和重金属污染农田综合防治与修复技术研发”专项组织实施进展分析. 农业环境科学学报, 2017,36(7):1242-1246. |
XU C C, XIONG W, ZHENG G, LIN Y H. Progress of the program for research and development on comprehensive prevention and remediation techniques for agricultural non-point source and heavy metal polluted croplands. Journal of Agro-Environment Science, 2017,36(7):1242-1246. (in Chinese) | |
[5] |
LUO S L, CALDERON U A, YU J H, LIAO W B, XIE J M, LÜ J, FENG Z, TANG Z Q. The role of hydrogen sulfide in plant alleviates heavy metal stress. Plant and Soil, 2020,449(1/2):1-10.
doi: 10.1007/s11104-020-04471-x |
[6] | RUFF H A, MARKOWITZ M E, BIJUR P E, ROSEN J F. Relationships among blood lead levels, iron deficiency, and cognitive development in two-year-old children. Environmental Health Perspectives, 1996,104(2):180-185. |
[7] | 张玉林. 资本的秩序与乡村居民铅中毒——关于河南省多个案例的分析. 江苏行政学院学报, 2017(3):67-76. |
ZHANG Y L. Capital order and lead poisoning of rural residents— analysis of multiple cases in Henan province. Journal of Jiangsu Administration Institute, 2017(3):67-76. (in Chinese) | |
[8] | 薛涛, 廖晓勇, 王凌青, 张扬珠. 镉污染农田不同水稻品种镉积累差异研究. 农业环境科学学报, 2019,38(8):1818-1826. |
XUE T, LIAO X Y, WANG L Q, ZHANG Y Z. Cadmium accumulation in different rice cultivars from cadmium-polluted paddy fields. Journal of Agro-Environment Science, 2019,38(8):1818-1826. (in Chinese) | |
[9] | 宋淑艳, 拜丽克孜·买提库尔班. 重金属镉、铅对小麦的影响及改良剂缓解效果研究进展专题综述. 天津农林科技, 2021(1):41-43. |
SONG S Y, BERIKZI M. A review of the research progress on the effects of heavy metals cadmium and lead on wheat and the mitigation effects of improvers. Tianjin Agriculture and Forestry Science and Technology, 2021(1):41-43. (in Chinese) | |
[10] |
YAN A, WANG Y M, TAN S N, YUSOF M L M, GHOSH S, CHEN Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 2020,11:359.
doi: 10.3389/fpls.2020.00359 |
[11] |
JIANG L, WANG W, CHEN Z, GAO Q, XU Q, CAO H. A role for APX1 gene in lead tolerance in Arabidopsis thaliana. Plant Science, 2017,256:94-102.
doi: 10.1016/j.plantsci.2016.11.015 |
[12] |
KIM D Y, BOVET L, NOH E W, MARTINOIA E, LEE Y. AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiology, 2006,140(3):922-932.
doi: 10.1104/pp.105.074146 |
[13] |
KIM D Y, BOVET L, MAESHIMA M, MARTINOIA E, LEE Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. The Plant Journal, 2007,50(2):207-218.
doi: 10.1111/j.1365-313X.2007.03044.x |
[14] |
XIAO S, GAO W, CHEN Q F, RAMALINGAM S, CHYE M L. Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis. The Plant Journal, 2008,54(1):141-151.
doi: 10.1111/j.1365-313X.2008.03402.x |
[15] |
ARAZI T, SUNKAR R, KAPLAN B, FROMM H. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. The Plant Journal, 1999,20(2):171-182.
doi: 10.1046/j.1365-313x.1999.00588.x |
[16] | SCHUURINK R C, SHARTZER S F, FATH A, JONES R L. Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proceedings of the National Academy of Science of the United States of America, 1998,95(4):1944-1949. |
[17] |
HINDU V, PALACIOS-ROJAS N, BABU R, SUWARNO W B, RASHID Z, USHA R, SAYKHEDKAR G R, NAIR S K. Identification and validation of genomic regions influencing kernel zinc and iron in maize. Theoretical and Applied Genetics, 2018,131(7):1443-1457.
doi: 10.1007/s00122-018-3089-3 |
[18] |
PANG Y L, WU Y Y, LIU C X, LI W H, ST AMAND P, BERNARDO A, WANG D F, DONG L, YUAN X F, ZHANG H R, ZHAO M, LI L Z, WANG L M, HE F, LIANG Y L, YAN Q, LU Y, SU Y, JIANG H M, WU J J, LI A F, KONG L R, BAI G H, LIU S B. High-resolution genome-wide association study and genomic prediction for disease resistance and cold tolerance in wheat. Theoretical and Applied Genetics, 2021,134(9):2857-2873.
doi: 10.1007/s00122-021-03863-6 |
[19] | ZHONG H, LIU S, SUN T, KONG W L, DENG X X, PENG Z H, LI Y S. Multi-locus genome-wide association studies for five yield- related traits in rice. BMC Plant Biology, 2021(21):364. |
[20] |
PAN X W, LI Y C, LIU W Q, LIU S X, MIN J, XIONG H B, DONG Z, DUAN Y H, YU Y Y, LI X X. QTL mapping and candidate gene analysis of cadmium accumulation in polished rice by genome-wide association study. Scientific Reports, 2020,10:11791.
doi: 10.1038/s41598-020-68742-4 |
[21] |
QIN P, WANG L, LIU K, MAO S S, LI Z Y, GAO S, SHI H R, LIU Y X. Genome-wide association study of Aegilops tauschii traits under seedling-stage cadmium stress. Crop Journal, 2015,3(5):405-415.
doi: 10.1016/j.cj.2015.04.005 |
[22] |
ZHANG F G, XIAO X, XU K, CHENG X, XIE T, HU J H, WU X M. Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napus L.). BMC Genomics, 2020,21(1):139.
doi: 10.1186/s12864-020-6558-4 |
[23] | 张寒, 潘香逾, 王秀华, 李家丽, 姜慧新, 赵岩. 苜蓿萌发期耐盐性综合评价与耐盐种质筛选. 草地学报, 2018,26(3):666-672. |
ZHANG H, PAN X Y, WANG X H, LI J L, JIANG H X, ZHAO Y. Comprehensive evaluation of salt tolerance and screening for salt tolerance germplasm of alfalfa (medicago) at germination stage. Acta Agrestia Sinica, 2018,26(3):666-672. (in Chinese) | |
[24] | 陈新, 吴斌, 张宗文. 燕麦种质资源重要农艺性状适应性和稳定性评价. 植物遗传资源学报, 2016,17(4):577-585. |
CHEN X, WU B, ZHANG Z W. Evaluation of adaptability and stability for important agronomic traits of Oat (Avena spp.) germplasm resources. Journal of Plant Genetic Resources, 2016,17(4):577-585. (in Chinese) | |
[25] |
YANG Y, CHAI Y M, ZHANG X, LU S, ZHAO Z C, WEI D, CHEN L, HU Y G. Multi-locus GWAS of quality traits in bread wheat: Mining more candidate genes and possible regulatory network. Frontiers in Plant Science, 2020,11:1091.
doi: 10.3389/fpls.2020.01091 |
[26] |
ZHANG F G, XIAO X, XU K, CHENG X, XIE T, HU J H. Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napus L.). BMC Genomics, 2020,21(1):139.
doi: 10.1186/s12864-020-6558-4 |
[27] | 戴海芳, 武辉, 阿曼古丽·买买提阿力, 王立红, 麦麦提·阿皮孜, 张巨松. 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学, 2014,47(7):1290-1300. |
DAI H F, WU H, AMANGULI M, WANG L H, MAIMAITI A, ZHANG J S. Analysis of salt-tolerance and determination of salt-tolerance evaluation indicators in cotton seedlings of different genotypes. Scientia Agricultura Sinica, 2014,47(7):1290-1300. (in Chinese) | |
[28] | THOMAS C L, ALCOCK T D, GRAHAM N S, HAYDEN R, MATTERSON S, WILSON L, YOUNG S D, DUPUY L X, WHITE P J, HAMMOND J P, DANKU JMC, SALT D E, SWEENEY A, BANCROFT I, BROADLEY M R. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit. BMC Plant Biology, 2016(16):214. |
[29] |
UTMAZIAN M N D, WIESHAMMER G, VEGA R, WENZEL W W. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environmental Pollution, 2007,148(1):155-165.
doi: 10.1016/j.envpol.2006.10.045 |
[30] |
YUN L, LARSON S R, JENSEN K B, STAUB J E, GROSSL P R. Quantitative trait loci (QTL) and candidate genes associated with trace element concentrations in perennial grasses grown on phytotoxic soil contaminated with heavy metals. Plant and Soil, 2015,396(1/2):277-296.
doi: 10.1007/s11104-015-2583-5 |
[31] | 康吉利, 曾志军, 刘玉佩. 铅胁迫对小麦种子萌发及幼苗生长的影响. 广西农业科学, 2009,40(2):144-146. |
KANG J L, ZENG Z J, LIU Y P. Effects of lead(Pb2+)stress on seed germination and seedling growth of wheat. Guangxi Agricultural Sciences, 2009,40(2):144-146. (in Chinese) | |
[32] | 耿雷跃, 马小定, 崔迪, 张启星, 韩冰, 韩龙植. 水稻全生育期耐盐性鉴定评价方法研究. 植物遗传资源学报, 2019,20(2):267-275. |
GENG L Y, MA X D, CUI D, ZHANG Q X, HAN B, HAN L Z. Identification and evaluation method for saline tolerance in rice during the whole growth stage. Journal of Plant Genetic Resources, 2019,20(2):267-275. (in Chinese) | |
[33] |
ZHANG C, DONG S S, XU J Y, HE W M, YANG T L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 2019,35(10):1786-1788.
doi: 10.1093/bioinformatics/bty875 |
[34] | YU S Z, WU J H, WANG M, SHI W M, XIA G M, JIA J Z, KANG Z S, HAN D J. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree- based kinship analyses. Crop Journal, 2020,8(6):1011-1024. |
[35] | 王继庆, 任毅, 时晓磊, 王丽丽, 张新忠, 苏力坛·姑扎丽阿依, 谢磊, 耿洪伟. 小麦籽粒超氧化物歧化酶(SOD)活性全基因组关联分析. 中国农业科学, 2021,54(11):2249-2265. |
WANG J Q, REN Y, SHI X L, WANG L L, ZHANG X Z, SULITAN G, XIE L, GENG H W. Genome-wide association analysis of superoxide dismutase (SOD) activity in wheat grain. Scientia Agricultura Sinica, 2021,54(11):2249-2265. (in Chinese) | |
[36] | 周思远, 毕惠惠, 程西永, 张旭睿, 闰永行, 王航辉, 毛培钧, 李海霞, 许海霞. 小麦耐低磷相关性状的全基因组关联分析. 植物遗传资源学报, 2020,21(2):431-445. |
ZHOU S Y, BI H H, CHENG X Y, ZHANG X R, RUN Y X, WANG H H, MAO P J, LI H X, XU H X. Genome-wide association study of low-phosphorus tolerance related traits in wheat. Journal of Plant Genetic Resources, 2020,21(2):431-445. (in Chinese) | |
[37] | APPELS R, EVERSOLE K, FEUILLET C, KELLER B, ROGERS J, STEIN N, POZNIAK C J, CHOULET F, DISTELFELD A, POLAND J. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018(361):661. |
[38] |
AHMAD M S A, ASHRAF M, TABASSAM Q, HUSSAIN M, FIRDOUS H. Lead (pb)-induced regulation of growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biological Trace Element Research, 2011,144(1/3):1229-1239.
doi: 10.1007/s12011-011-9099-5 |
[39] | 赵鲁, 叶琰, 刘继远, 刘安辉, 高振新, 王小龙, 李洋, 王震, 佟明恒. 添加铅对大豆和小麦生长及铅吸收特征影响的研究. 中国土壤与肥料, 2013(6):83-87. |
ZHAO L, YE Y, LIU J Y, LIU A H, GAO Z X, WANG X L, LI Y, WANG Z, TONG M H. Study on the effect of lead addition on the growth and lead absorption characteristics of soybean and wheat. China Soil and Fertilizer, 2013(6):83-87. (in Chinese) | |
[40] | 厉有为, 梁婵娟. 三种油料作物对土壤Pb污染的耐受性与积累. 环境化学, 2021,40(5):1602-1610. |
LI Y W, LIANG C J. Tolerance and accumulation of lead in three oil crops to lead pollution in soil. Environmental Chemistry, 2021,40(5):1602-1610. (in Chinese) | |
[41] |
AYANGBENRO A S, BABALOLA O O. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health, 2017,14(1):94.
doi: 10.3390/ijerph14010094 |
[42] | 王玲芬, 谢明. 对多起铅污染中毒事件处理的体会与思考. 中国卫生监督杂志, 2011,18(5):485-487. |
WANG L F, XIE M. Experience and thinking on handling multiple lead pollution incidents. Chinese Journal of Health Inspection, 2011,18(5):485-487. (in Chinese) | |
[43] | 郭思宇, 王海娟, 王宏镔. 重金属污染土壤间作修复的研究进展. 中国生态农业学报(中英文), 2021,29(5):890-902. |
GUO S Y, WANG H J, WANG H B. Advances in the intercropping remediation of heavy metal polluted soil. Chinese Journal of Eco-Agriculture, 2021,29(5):890-902. (in Chinese) | |
[44] | 秦丽, 湛方栋, 祖艳群, 孟婧轩, 晋磊, 李元. 土荆芥和蚕豆/玉米间作系统中Pb、Cd、Zn的累积特征研究. 云南农业大学学报(自然科学), 2017,32(1):153-160. |
QIN L, ZHAN F D, ZU Y Q, MENG J X, JIN L, LI Y. Accumulation characteristics of Pb,Cd and Zn by Chenopodium ambrosioides L. Intercropping with maize and broad bean. Journal of Yunnan Agricultural University (Natural Science), 2017,32(1):153-160. (in Chinese) | |
[45] | 陈国皓, 祖艳群, 湛方栋, 李博, 李元. 钝化剂处理对玉米与伴矿景天间作下植株生长及镉累积特征的影响. 农业环境科学学报, 2019,38(9):2103-2110. |
CHEN G H, ZU Y Q, ZHAN F D, LI B, LI Y. Effects of passivators on the growth and cadmium accumulation of intercropped maize and Sedum plumbizincicola. Journal of Agro-Environment Science, 2019,38(9):2103-2110. (in Chinese) | |
[46] |
WANG S Q, WEI S H, JI D D, BAI J Y. Co-Planting Cd contaminated field using hyperaccumulator Solanum nigrum L. through interplant with low accumulation welsh onion. International Journal of Phytoremediation, 2015,17(9):879-884.
doi: 10.1080/15226514.2014.981247 |
[47] | NIU Z X, SUN L N, SUN T H. Enrichment characteristics of Cd and Pb by four kinds of plant under hydroponic culture. Chinese Journal of Ecology, 2010,29(2):261-268. |
[48] |
HUANG X H, ZHAO Y, WEI XH, LI C Y, WANG A, ZHAO Q, LI W J, GUO Y L, DENG L W, ZHU C R, FAN D L, LU Y Q, WENG Q J, LIU K Y, ZHOU T Y, JING Y F, SI L Z, DONG G J, HUANG T, LU T T, FENG Q, QIAN Q, LI J Y, HAN B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2012,44(1):32-39.
doi: 10.1038/ng.1018 |
[49] |
STICH B, MELCHINGER A E. Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and Arabidopsis. BMC Genomics, 2009,10:94.
doi: 10.1186/1471-2164-10-94 |
[50] | LIU X, HUANG M, FAN B. Iterative usage of fixed and random effect models for powerful and efficient Genome-Wide association studies. PLoS ONE, 2016,12:e10059573. |
[51] |
LEE M, LEE K, LEE J, NOH E W, LEE Y. AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiology, 2005,138(2):827-836.
doi: 10.1104/pp.104.058107 |
[52] |
GAILLARD S, JACQUET H, VAVASSEUR A, LEONHARDT N, FORESTIER C. AtMRP6/AtABCC6, an ATP-binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biology, 2008,8:22.
doi: 10.1186/1471-2229-8-22 |
[53] |
THEODOULOU F L, KERR I D. ABC transporter research: going strong 40 years on. Biochemical Society Transactions, 2015,43(5):1033-1040.
doi: 10.1042/BST20150139 |
[54] | BHATI K K, SHARMA S, AGGARWAL S, KAUR M, SHUKLA V, KAUR J, MANTRI S, PANDEY A K. Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat. Frontiers in Plant Science, 2015,6:488. |
[55] |
PARK J, SONG W Y, KO D, EOM Y, HANSEN T H, SCHILLER M, LEE T G, MARTINOIA E, LEE Y. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. The Plant Journal, 2012,69(2):278-288.
doi: 10.1111/tpj.2011.69.issue-2 |
[56] |
OVECKA M, TAKAC T. Managing heavy metal toxicity stress in plants: Biological and biotechnological tools. Biotechnology Advances, 2014,32(1SI):73-86.
doi: 10.1016/j.biotechadv.2013.11.011 |
[57] |
ARRIVAULT S, SENGER T, KRAEMER U. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. The Plant Journal, 2006,46(5):861-879.
doi: 10.1111/tpj.2006.46.issue-5 |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[5] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[6] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[7] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[8] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[9] | 刘硕,张慧,高志源,许吉利,田汇. 437个小麦品种钾收获指数的变异特征[J]. 中国农业科学, 2022, 55(7): 1284-1300. |
[10] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[11] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[12] | 蔡苇荻,张羽,刘海燕,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于成像高光谱的小麦冠层白粉病早期监测方法[J]. 中国农业科学, 2022, 55(6): 1110-1126. |
[13] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
[14] | 马鸿翔, 王永刚, 高玉姣, 何漪, 姜朋, 吴磊, 张旭. 小麦抗赤霉病育种回顾与展望[J]. 中国农业科学, 2022, 55(5): 837-855. |
[15] | 冯子恒,宋莉,张少华,井宇航,段剑钊,贺利,尹飞,冯伟. 基于无人机多光谱和热红外影像信息融合的小麦白粉病监测[J]. 中国农业科学, 2022, 55(5): 890-906. |
|