[1] |
HUSSAIN M, ASGARI S. MicroRNAs as mediators of insect host-pathogen interactions and immunity. Journal of Insect Physiology, 2014, 70: 151-158.
doi: 10.1016/j.jinsphys.2014.08.003
|
[2] |
ASGARI S. MicroRNA functions in insects. Insect Biochemistry and Molecular Biology, 2013, 43(4): 388-397.
doi: 10.1016/j.ibmb.2012.10.005
|
[3] |
杨婕, 谢苗, 徐雪娇, 白建林, 尤民生. 昆虫miRNA研究进展. 昆虫学报, 2021, 64(2): 259-280.
|
|
YANG J, XIE M, XU X J, BAI J L, YOU M S. Research progress of insect miRNAs. Acta Entomologica Sinica, 2021, 64(2): 259-280. (in Chinese)
|
[4] |
施腾飞, 余林生, 刘芳, 宗超, 汪天澍. 蜜蜂microRNA的研究进展. 昆虫学报, 2014, 57(5): 601-606.
|
|
SHI T F, YU L S, LIU F, ZONG C, WANG T S. Progress in microRNAs in honey bees. Acta Entomologica Sinica, 2014, 57(5): 601-606. (in Chinese)
|
[5] |
LIU F, SHI T, YIN W, SU X, QI L, HUANG Z Y, ZHANG S, YU L. The microRNA ame-miR-279a regulates sucrose responsiveness of forager honey bees (Apis mellifera). Insect Biochemistry and Molecular Biology, 2017, 90: 34-42.
doi: 10.1016/j.ibmb.2017.09.008
|
[6] |
CRISTINO A S, BARCHUK A R, FREITAS F C, NARAYANAN R K, BIERGANS S D, ZHAO Z, SIMOES Z L, REINHARD J, CLAUDIANOS C. Neuroligin-associated microRNA-932 targets actin and regulates memory in the honeybee. Nature Communications, 2014, 5: 5529.
doi: 10.1038/ncomms6529
|
[7] |
熊翠玲, 杜宇, 陈大福, 郑燕珍, 付中民, 王海朋, 耿四海, 陈华枝, 周丁丁, 吴素珍, 石彩云, 郭睿. 意大利蜜蜂幼虫肠道的miRNAs的生物信息学预测及分析. 应用昆虫学报, 2018, 55(6): 1023-1033.
|
|
XIONG C L, DU Y, CHEN D F, ZHENG Y Z, FU Z M, WANG H P, GENG S H, CHEN H Z, ZHOU D D, WU S Z, SHI C Y, GUO R. Bioinformatic prediction and analysis of miRNAs in the Apis mellifera ligustica larval gut. Chinese Journal of Applied Entomology, 2018, 55(6): 1023-1033. (in Chinese)
|
[8] |
杜宇, 范小雪, 蒋海宾, 王杰, 范元婵, 祝智威, 周丁丁, 万洁琦, 卢家轩, 熊翠玲, 郑燕珍, 陈大福, 郭睿. 微小RNA及其介导的竞争性内源RNA调控网络在意大利蜜蜂工蜂中肠发育过程中的潜在作用. 中国农业科学, 2020, 53(12): 2512-2526.
|
|
DU Y, FAN X X, JIANG H B, WANG J, FAN Y C, ZHU Z W, ZHOU D D, WAN J Q, LU J X, XIONG C L, ZHENG Y Z, CHEN D F, GUO R. The potential role of microRNAs and microRNA-mediated competing endogenous networks during the developmental process of Apis mellifera ligustica worker’s midgut. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526. (in Chinese)
|
[9] |
吴小波, 王子龙, 石元元, 张飞, 曾志将. 婚飞对中华蜜蜂性成熟处女蜂王sRNAs表达的影响. 中国农业科学, 2013, 46(17): 3721-3728.
|
|
WU X B, WANG Z L, SHI Y Y, ZHANG F, ZENG Z J. Effects of mating flight on sRNAs expression in sexual matured virgin queens (Apis cerana cerana). Scientia Agricultura Sinica, 2013, 46(17): 3721-3728. (in Chinese)
|
[10] |
杜宇, 童新宇, 周丁丁, 陈大福, 熊翠玲, 郑燕珍, 徐国钧, 王海朋, 陈华枝, 郭意龙, 隆琦, 郭睿. 中华蜜蜂幼虫肠道响应球囊菌胁迫的microRNA应答分析. 微生物学报, 2019, 59(9): 1747-1764.
|
|
DU Y, TONG X Y, ZHOU D D, CHEN D F, XIONG C L, ZHENG Y Z, XU G J, WANG H P, CHEN H Z, GUO Y L, LONG Q, GUO R. MicroRNA responses in the larval gut of Apis cerana cerana to Ascosphaera apis stress. Acta Microbiologica Sinica, 2019, 59(9): 1747-1764. (in Chinese)
|
[11] |
CHEN D F, DU Y, CHEN H Z, FAN Y C, FAN X X, ZHU Z W, WANG J, XIONG C L, ZHENG Y Z, HOU C S, DIAO Q Y, GUO R. Comparative identification of microRNAs in Apis cerana cerana workers’ midguts in response to Nosema ceranae invasion. Insects, 2019, 10(9): 258.
doi: 10.3390/insects10090258
|
[12] |
郭睿, 杜宇, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 王海朋, 陈华枝, 耿四海, 周丁丁, 石彩云, 赵红霞, 陈大福. 意大利蜜蜂幼虫肠道发育过程中的差异表达microRNA及其调控网络. 中国农业科学, 2018, 51(21): 4197-4209.
|
|
GUO R, DU Y, XIONG C L, ZHENG Y Z, FU Z M, XU G J, WANG H P, CHEN H Z, GENG S H, ZHOU D D, SHI C Y, ZHAO H X, CHEN D F. Differentially expressed microRNA and their regulation networks during the developmental process of Apis mellifera ligustica larval gut. Scientia Agricultura Sinica, 2018, 51(21): 4197-4209. (in Chinese)
|
[13] |
郭睿, 杜宇, 童新宇, 熊翠玲, 郑燕珍, 徐国钧, 王海朋, 耿四海, 周丁丁, 郭意龙, 吴素珍, 陈大福. 意大利蜜蜂幼虫肠道在球囊菌侵染前期的差异表达microRNA及其调控网络. 中国农业科学, 2019, 52(1): 166-180.
|
|
GUO R, DU Y, TONG X Y, XIONG C L, ZHENG Y Z, XU G J, WANG H P, GENG S H, ZHOU D D, GUO Y L, WU S Z, CHEN D F. Differentially expressed microRNAs and their regulation networks in Apis mellifera ligustica larval gut during the early stage of Ascosphaera apis infection. Scientia Agricultura Sinica, 2019, 52(1): 166-180. (in Chinese)
|
[14] |
陈华枝, 熊翠玲, 祝智威, 王杰, 范小雪, 蒋海宾, 范元婵, 万洁琦, 卢家轩, 郑燕珍, 付中民, 徐国钧, 陈大福, 郭睿. 基于small RNA组学分析揭示意大利蜜蜂响应东方蜜蜂微孢子虫胁迫的免疫应答机制. 微生物学报, 2020, 60(7): 1458-1478.
|
|
CHEN H Z, XIONG C L, ZHU Z W, WANG J, FAN X X, JIANG H B, FAN Y C, WAN J Q, LU J X, ZHENG Y Z, FU Z M, XU G J, CHEN D F, GUO R. Unraveling the mechanism underlying the immune responses of Apis mellifera ligustica to Nosema ceranae stress based on small RNA omics analyses. Acta Microbiologica Sinica, 2020, 60(7): 1458-1478. (in Chinese)
|
[15] |
熊翠玲, 杜宇, 冯睿蓉, 蒋海宾, 史小玉, 王海朋, 范小雪, 王杰, 祝智威, 范元婵, 陈华枝, 周丁丁, 郑燕珍, 陈大福, 郭睿. 侵染中华蜜蜂6日龄幼虫的蜜蜂球囊菌的微小RNA差异表达谱及调控网络. 微生物学报, 2020, 60(5): 992-1009.
|
|
XIONG C L, DU Y, FENG R R, JIANG H B, SHI X Y, WANG H P, FAN X X, WANG J, ZHU Z W, FAN Y C, CHEN H Z, ZHOU D D, ZHENG Y Z, CHEN D F, GUO R. Differential expression pattern and regulation network of microRNAs in Ascosphaera apis invading Apis cerana cerana 6-day-old larvae. Acta Microbiologica Sinica, 2020, 60(5): 992-1009. (in Chinese)
|
[16] |
耿四海, 石彩云, 范小雪, 王杰, 祝智威, 蒋海宾, 范元婵, 陈华枝, 杜宇, 王心蕊, 熊翠玲, 郑燕珍, 付中民, 陈大福, 郭睿. 微小RNA介导东方蜜蜂微孢子虫侵染意大利蜜蜂工蜂的分子机制. 中国农业科学, 2020, 53(15): 3187-3204.
|
|
GENG S H, SHI C Y, FAN X X, WANG J, ZHU Z W, JIANG H B, FAN Y C, CHEN H Z, DU Y, WANG X R, XIONG C L, ZHENG Y Z, FU Z M, CHEN D F, GUO R. The mechanism underlying microRNAs-mediated Nosema ceranae infection to Apis mellifera ligustica worker. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204. (in Chinese)
|
[17] |
陈华枝, 祝智威, 蒋海宾, 王杰, 范元婵, 范小雪, 万洁琦, 卢家轩, 熊翠玲, 郑燕珍, 付中民, 陈大福, 郭睿. 蜜蜂球囊菌菌丝和孢子中微小RNA及其靶mRNA的比较分析. 中国农业科学, 2020, 53(17): 3606-3619.
|
|
CHEN H Z, ZHU Z W, JIANG H B, WANG J, FAN Y C, FAN X X, WAN J Q, LU J X, XIONG C L, ZHENG Y Z, FU Z M, CHEN D F, GUO R. Comparative analysis of microRNAs and corresponding target mRNAs in Ascosphaera apis mycelium and spore. Scientia Agricultura Sinica, 2020, 53(17): 3606-3619. (in Chinese)
|
[18] |
XIAO S, WANG B, LI K, XIONG S, YE X, WANG J, ZHANG J, YAN Z, WANG F, SONG Q, STANLEY D W, YE G, FANG Q. Identification and characterization of miRNAs in an endoparasitoid wasp, Pteromalus puparum. Archives of Insect Biochemistry and Physiology, 2020, 103(2): e21633.
|
[19] |
ROUSH S, SLACK F J. The let-7 family of microRNAs. Trends in Cell Biology, 2008, 18(10): 505-516.
doi: 10.1016/j.tcb.2008.07.007
|
[20] |
SIMOES DA SILVA C J, SOSPEDRA I, APARICIO R, BUSTURIA A. The microRNA-306/abrupt regulatory axis controls wing and haltere growth in Drosophila. Mechanisms of Development, 2019, 158: 103555.
doi: 10.1016/j.mod.2019.103555
|
[21] |
MACEDO L M, NUNES F M, FREITAS F C, PIRES C V, TANAKA E D, MARTINS J R, PIULACHS M D, CRISTINO A S, PINHEIRO D G, SIMÕES Z L. MicroRNA signatures characterizing caste- independent ovarian activity in queen and worker honeybees (Apis mellifera L.). Insect Molecular Biology, 2016, 25(3): 216-226.
doi: 10.1111/imb.2016.25.issue-3
|
[22] |
KLEINO A, SILVERMAN N. Regulation of the Drosophila Imd pathway by signaling amyloids. Insect Biochemistry and Molecular Biology, 2019, 108: 16-23.
doi: 10.1016/j.ibmb.2019.03.003
|
[23] |
GOU J, LIN L, OTHMER H G. A model for the Hippo pathway in the Drosophila wing disc. Biophysical Journal, 2018, 115(4): 737-747.
doi: 10.1016/j.bpj.2018.07.002
|
[24] |
SONG J, LI W, ZHAO H, ZHOU S. Clustered miR-2, miR-13a, miR-13b and miR-71 coordinately target Notch gene to regulate oogenesis of the migratory locust Locusta migratoria. Insect Biochemistry and Molecular Biology, 2019, 106: 39-46.
doi: 10.1016/j.ibmb.2018.11.004
|
[25] |
ZHU K, LIU M, FU Z, ZHOU Z, KONG Y, LIANG H, LIN Z, LUO J, ZHENG H, WAN P, et al. Plant microRNAs in larval food regulate honeybee caste development. PLoS Genetics, 2017, 13(8): e1006946.
doi: 10.1371/journal.pgen.1006946
|
[26] |
HU Y T, WU T C, YANG E C, WU P C, LIN P T, WU Y L. Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation. Scientific Reports, 2017, 7: 41255.
doi: 10.1038/srep41255
|
[27] |
BRUTSCHER L M, DAUGHENBAUGH K F, FLENNIKEN M L. Antiviral defense mechanisms in honey bees. Current Opinion in Insect Science, 2015, 10: 71-82.
doi: 10.1016/j.cois.2015.04.016
|
[28] |
LOURENÇO A P, GUIDUGLI-LAZZARINI K R, FREITAS F C, BITONDI M M, SIMÕES Z L. Bacterial infection activates the immune system response and dysregulates microRNA expression in honey bees. Insect Biochemistry and Molecular Biology, 2013, 43(5): 474-482.
doi: 10.1016/j.ibmb.2013.03.001
|
[29] |
李江红, 郑志阳, 陈大福, 梁勤. 影响蜜蜂球囊菌侵染蜜蜂幼虫的因素及侵染过程观察. 昆虫学报, 2012, 55(7): 790-797.
|
|
LI J H, ZHENG Z Y, CHEN D F, LIANG Q. Factors influencing Ascosphaera apis infection on honeybee larvae and observation on the infection process. Acta Entomologica Sinica, 2012, 55(7): 790-797. (in Chinese)
|