中国农业科学 ›› 2021, Vol. 54 ›› Issue (14): 3077-3087.doi: 10.3864/j.issn.0578-1752.2021.14.013
收稿日期:
2020-08-30
接受日期:
2020-11-24
出版日期:
2021-07-16
发布日期:
2021-07-26
通讯作者:
胡晓辉
作者简介:
王君正,E-mail: 基金资助:
WANG JunZheng(),ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui()
Received:
2020-08-30
Accepted:
2020-11-24
Online:
2021-07-16
Published:
2021-07-26
Contact:
XiaoHui HU
摘要:
【目的】探究甲基营养型芽孢杆菌和植物乳杆菌两种微生物菌剂对有机基质培黄瓜产量、品质及根际环境的影响,开发新型功能型微生物制剂,指导黄瓜优质高效生产。【方法】以‘博耐526’黄瓜品种为材料,采用有机基质袋培方式,在浇灌清水(N)和营养液(F)2种养分水平下,以不添加菌剂为对照(分别记为CK1和CK2),于定植后第20、35和50天按2.5×1010CFU/株的菌剂用量分别灌根添加‘VL-10’型甲基营养型芽孢杆菌(NT1、FT1)和‘LYS-1’型植物乳杆菌(NT2、FT2)两种菌剂,共6个处理。【结果】两种养分水平下,与CK1和CK2处理相比,甲基营养型芽孢杆菌处理植株的干物质积累量增幅分别为13.51%和15.02%,产量增幅分别为20.83%和15.63%;植物乳杆菌处理植株干物质积累量增幅分别为11.43%和8.42%,产量增幅分别为17.42%和14.96%,甲基营养型芽孢杆菌对植株干物质积累和产量形成的促进效果优于植物乳杆菌。以FT1处理的果实品质最优,其游离氨基酸、有机酸、可溶性糖、还原糖和维C含量分别较CK2处理显著提高了10.61%、28.93%、22.92%和39.88%(P<0.05),FT2处理的果实品质次之;NT1和NT2处理较CK1处理显著提高了植株P(7.43%和13.50%)、K(10.60%和8.19%)元素积累量(P<0.05),FT1和FT2处理的植株N(19.57%和24.18%)、P(17.16%和12.50%)、K(16.48%和26.25%)元素积累量均较CK2处理显著提高(P<0.05);FT1处理的N、P、K肥料利用率较CK2处理分别显著提高了82.85%、483.90%和75.60%(P<0.05),FT2处理分别显著提高了102.42%、367.98%和120.46%(P<0.05)。NT1和NT2处理较CK1处理提高了盛果期的基质蔗糖酶(100.66%、116.60%)、过氧化氢酶(3.39%、4.10%)和碱性磷酸酶(6.99%、95.08%)活性,其中过氧化氢酶和碱性磷酸酶活性在拉秧期依然高于CK1处理;而FT1和FT2处理均较CK2处理显著提高了盛果期和拉秧期的基质脲酶(3.75%、4.95%和13.13%、6.12%)、蔗糖酶(68.62%、24.93%和31.68%、63.35%)和碱性磷酸酶活性(18.00%、26.99%和109.64%、84.01%)(P<0.05),且甲基营养型芽孢杆菌对脲酶和碱性磷酸酶的影响优于植物乳杆菌;两种养分水平下,甲基营养型芽孢杆菌处理的基质有效态氮含量在盛果期分别较CK1和CK2显著提高了63.33%和72.70%(P<0.05),在拉秧期增幅为25.48%和86.46%,同时期增幅均大于植物乳杆菌,有利于保持更高的基质有效态氮含量。【结论】灌根添加7.5×1010CFU/株的甲基营养型芽孢杆菌和植物乳杆菌均可改善有机基质袋培黄瓜的根际环境,促进植株对元素的吸收、同化和积累,有效提高黄瓜产量和果实品质,以甲基营养型芽孢杆菌的增产提质效果更优。
王君正,张琪,高子星,马雪强,屈锋,胡晓辉. 两种微生物菌剂对有机基质袋培秋黄瓜产量、品质及根际环境的影响[J]. 中国农业科学, 2021, 54(14): 3077-3087.
WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate[J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
表1
两种微生物菌剂对有机基质培黄瓜品质的影响"
处理 Treatment | 游离氨基酸 Free amino acids (μg·g-1) | 可溶性蛋白 Soluble protein (μg·g-1) | 有机酸 Organic acid (%) | 可溶性糖 Soluble sugar (%) | 还原糖 Reducing sugar (%) | 维生素C Vitamin C (μg·g-1) | 硝酸盐 Nitrate content (μg·g-1) | |
---|---|---|---|---|---|---|---|---|
CK1 | 609.60±6.13f | 296.30±5.86c | 1.22±0.013d | 8.17±0.17d | 1.12±0.004c | 55.14±0.58d | 273.07±4.72d | |
NT1 | 700.93±9.03d | 349.11±1.08b | 1.29±0.017c | 9.26±0.34c | 1.43±0.068b | 55.14±1.01d | 338.89±5.16b | |
NT2 | 648.57±6.71e | 238.72±4.47d | 1.42±0.009b | 9.12±0.17c | 1.37±0.048b | 63.88±1.21cd | 309.30±5.16c | |
CK2 | 745.72±9.07c | 373.36±2.81a | 1.44±0.013b | 9.54±0.23c | 1.44±0.080b | 73.29±0.58bc | 415.58±12.55a | |
FT1 | 824.84±7.63a | 387.21±4.22a | 1.53±0.004a | 12.30±0.38a | 1.77±0.078a | 102.52±5.61a | 359.42±5.23b | |
FT2 | 800.41±6.48b | 302.36±8.98c | 1.50±0.015a | 10.47±0.41b | 1.45±0.033b | 79.33±4.62b | 360.02±10.16b | |
方差分析 ANOVA | 营养液 F | 489.516** | 197.361** | 318.604** | 61.696** | 26.000** | 0.244 | 125.693** |
菌剂 M | 63.083** | 182.428** | 33.353** | 4.597* | 0.153 | 61.526** | 1.797 | |
营养液×菌剂 F×M | 1.696 | 7.256** | 44.611** | 21.232** | 18.003** | 25.139** | 33.304** |
表2
两种微生物菌剂对黄瓜干物质积累与分配的影响"
处理 Treatment | 根 Root (g/plant) | 茎 Stem (g/plant) | 叶 Leaf (g/plant) | 果 Fruit (g/plant) | 果实干物质分配系数 Distribution index of fruit (%) | |
---|---|---|---|---|---|---|
CK1 | 3.52±0.16b | 14.00±0.34d | 56.81±2.25b | 69.30±0.66e | 0.48±0.009c | |
NT1 | 4.24±0.08a | 16.08±0.14c | 57.09±3.78b | 85.63±1.24c | 0.53±0.013ab | |
NT2 | 3.57±0.01b | 16.61±0.56bc | 58.36±2.27b | 81.50±1.26d | 0.51±0.013bc | |
CK2 | 3.38±0.19b | 15.75±0.24c | 61.99±0.26b | 94.34±0.82b | 0.54±0.002ab | |
FT1 | 4.41±0.24a | 20.43±0.71a | 70.95±3.81a | 106.03±1.10a | 0.53±0.011ab | |
FT2 | 3.68±0.10b | 17.66±0.39b | 62.91±1.57ab | 105.99±0.43a | 0.56±0.006a | |
方差分析 ANOVA | 营养液 F | 0.151 | 44.008** | 13.372** | 874.705** | 17.945** |
菌剂 M | 17.263** | 30.714** | 1.647 | 122.633** | 2.838 | |
营养液×菌剂 F×M | 0.539 | 7.813** | 1.954 | 3.456 | 4.494* |
表3
两种微生物菌剂对基质酶活性的影响"
处理 Treatment | 脲酶 Urease activity (mg·g-1·d-1) | 蔗糖酶 Sucrase activity (mg·g-1·d-1) | 过氧化氢酶 Catalase activity (mL·g-1·d-1) | 碱性磷酸酶 Alkaline phosphatase activity (mg·g-1·d-1) | |||||
---|---|---|---|---|---|---|---|---|---|
盛果期 Full fruiting stage | 拉秧期 Seedling pulling stage | 盛果期 Full fruiting stage | 拉秧期 Seedling pulling stage | 盛果期 Full fruiting stage | 拉秧期 Seedling pulling stage | 盛果期 Full fruiting stage | 拉秧期 Seedling pulling stage | ||
CK1 | 6.53±0.02b | 6.78±0.09c | 136.86±9.37e | 103.36±1.90c | 1.93±0.139d | 2.36±0.012bc | 5.46±0.31c | 3.86±0.71b | |
NT1 | 5.81±0.04c | 6.36±0.02d | 274.62±9.00b | 83.81±5.17d | 2.34±0.003b | 2.44±0.009ab | 6.59±0.30b | 7.53±0.44a | |
NT2 | 5.85±0.01c | 6.66±0.03c | 296.44±1.22a | 63.53±8.88e | 2.48±0.021b | 2.54±0.039a | 5.83±0.12c | 4.13±0.45b | |
CK2 | 6.67±0.03b | 6.70±0.03c | 160.30±0.37d | 96.57±0.80cd | 2.03±0.168cd | 2.23±0.015d | 5.89±0.03c | 3.94±0.37b | |
FT1 | 6.92±0.11a | 7.58±0.09a | 270.29±5.32b | 127.16±8.72b | 2.85±0.018a | 2.31±0.033cd | 6.95±0.28ab | 8.62±0.43a | |
FT2 | 7.00±0.10a | 7.11±0.05b | 200.27±9.24c | 157.75±1.71a | 2.26±0.006bc | 2.46±0.059ab | 7.48±0.09a | 7.25±0.11a | |
方差分析 ANOVA | 营养液 F | 234.482** | 127.569** | 20.907** | 90.592** | 0.827 | 17.273** | 2.55 | 4.972* |
菌剂 M | 7.104** | 8.047** | 182.185** | 1.811 | 23.677** | 19.534** | 16.378** | 1.783 | |
营养液×菌剂 F×M | 39.428** | 63.632** | 41.375** | 40.529** | 9.634** | 0.466 | 13.287** | 51.432** |
表4
两种微生物菌剂对基质有效态氮含量的影响"
处理 Treatment | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | 有效态N总量 Total available nitrogen (mg·kg-1) | ||||
---|---|---|---|---|---|---|---|
盛果期 Full fruiting stage | 拉秧期Seedling pulling stage | 盛果期 Full fruiting stage | 拉秧期 Seedling pulling stage | 盛果期 Full fruiting stage | 拉秧期 Seedling pulling stage | ||
CK1 | 21.81±0.67d | 24.16±0.72b | 405.44±5.17e | 271.84±2.54f | 427.25±5.45e | 296.00±3.16f | |
NT1 | 75.63±0.69a | 20.37±0.23bc | 622.19±3.82c | 341.12±2.08d | 697.81±3.98c | 371.41±2.13d | |
NT2 | 62.03±2.47b | 30.61±2.64a | 612.64±18.31c | 283.15±4.38e | 674.67±20.77c | 313.76±5.91e | |
CK2 | 15.47±0.51e | 30.29±0.37a | 514.72±1.64d | 389.23±5.04c | 530.19±2.14d | 409.60±4.94c | |
FT1 | 77.39±0.68a | 18.67±0.74c | 838.24±8.52a | 745.07±1.12a | 915.63±9.18a | 763.73±0.44a | |
FT2 | 41.92±0.65c | 22.56±0.67b | 704.16±7.09b | 437.76±3.15b | 746.08±7.28b | 460.32±3.75b | |
方差分析 ANOVA | 营养液 F | 244.174** | 1.517 | 346.006** | 5046.852** | 223.717** | 3769.324** |
菌剂 M | 1243.315** | 25.307** | 467.776** | 3411.182** | 542.801** | 2423.188** | |
营养液×菌剂 F×M | 180.810** | 17.469** | 27.105** | 975.240** | 35.165** | 714.535** |
表5
盛果期根际环境与果实品质的相关性分析"
因子 Factor | 游离氨基酸 Free amino acids | 可溶性蛋白 Soluble protein | 有机酸 Organic acid | 可溶性糖 Soluble sugar | 还原糖 Reducing sugar | 维生素C Vitamin C | 硝酸盐 Nitrate content |
---|---|---|---|---|---|---|---|
脲酶 Urease | 0.651** | 0.410 | 0.532* | 0.540* | 0.312 | 0.686** | 0.408 |
蔗糖酶 Sucrase | 0.166 | -0.106 | 0.296 | 0.349 | 0.501* | 0.192 | -0.053 |
过氧化氢酶 Catalase | 0.426 | 0.128 | 0.435 | 0.652** | 0.689** | 0.563* | -0.003 |
碱性磷酸酶 Alkaline phosphatase | 0.762** | 0.256 | 0.547* | 0.637** | 0.467 | 0.501* | 0.320 |
铵态氮 Ammonium | 0.123 | 0.127 | 0.094 | 0.382 | 0.501* | 0.190 | -0.150 |
硝态氮 Nitrate | 0.798** | 0.315 | 0.764** | 0.879** | 0.844** | 0.771** | 0.340 |
有效态氮总量 Total available nitrogen | 0.728** | 0.301 | 0.693** | 0.845** | 0.834** | 0.716** | 0.276 |
[1] | 孙光闻, 陈日远, 刘厚诚. 设施蔬菜连作障碍原因及防治措施. 农业工程学报, 2005, 21(增刊):184-188. |
SUN G W, CHEN R Y, LIU H C. Causes and control measures for continuous cropping obstacles in protected vegetable cultivation. Transactions of the Chinese Society for Agricultural Machinery, 2005, 21(Supp):184-188. (in Chinese) | |
[2] | 徐小莲. 我国蔬菜无土栽培现状与发展趋势. 农业工程, 2019, 10(9):121-123. |
XU X L. Current situation and development trend of vegetable soilless cultivation in China. Agricultural Engineering, 2019, 10(9):121-123. (in Chinese) | |
[3] | 祝英, 彭轶楠, 巩晓芳, 张军, 王治业, 郭增祥, 马坤源, 周剑平, 杨晖. 不同微生物菌剂对当归苗生长及根际土微生物和养分的影响. 应用与环境生物学报, 2017, 23(3):511-519. |
ZHU Y, PENG Y N, GONG X F, ZHANG J, WANG Z Y, GUO Z X, MA K Y, ZHOU J P, YANG H. Effects of different microbial agents on growth of Angelica sinensis and microorganism population and nutrients of rhizosphere soil. Chinese Journal of Applied & Environmental Biology, 2017, 23(3):511-519. (in Chinese) | |
[4] | 李艳玲. 根际微生物群落对挥发性有机物和作物生长的影响[D]. 北京: 中国农业科学院, 2019. |
LI Y L. Effects of rhizosphere microbiomes on volatile organic compounds and crop growth[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese) | |
[5] | 蒋静静, 屈锋, 苏春杰, 杨剑锋, 余剑, 胡晓辉. 不同肥水耦合对黄瓜产量品质及肥料偏生产力的影响. 中国农业科学, 2019, 52(1):86-97. |
JIANG J J, QU F, SU C J, YANG J F, YU J, HU X H. Effects of different water and fertilizer coupling on yield and quality of cucumber and partial factor productivity of fertilizer. Scientia Agricultura Sinica, 2019, 52(1):86-97. (in Chinese) | |
[6] | 王鹏勃, 李建明, 丁娟娟, 刘国英, 潘铜华, 杜清洁, 常毅博. 水肥耦合对温室袋培番茄品质、产量及水分利用效率的影响. 中国农业科学, 2015, 48(2):314-323. |
WANG P B, LI J M, DING J J, LIU G Y, PAN T H, DU Q J, CHANG Y B. Effect of water and fertilizer coupling on quality, yield and water use efficiency of tomato cultivated by organic substrate in bag. Scientia Agricultura Sinica, 2015, 48(2):314-323. (in Chinese) | |
[7] | 徐刚, 高文瑞, 王欣, 李德翠, 孙艳军, 韩冰, 史珑燕. 水肥耦合对基质栽培辣椒前期产量和光合作用的影响. 中国农学通报, 2018, 34(14):40-47. |
XU G, GAO W R, WANG X, LI D C, SUN Y J, HAN B, SHI L Y. Water and fertilizer coupling effect on early yield and photosynthesis of pepper cultivated in organic substrate. Chinese Agricultural Science Bulletin, 2018, 34(14):40-47. (in Chinese) | |
[8] | MADHAIYAN M, POONGUZHALI S, KWON S W, SA T M. Bacillus methylotrophicus sp. nov. a methanol-utilizing, plant-growth promoting bacterium isolated from rice rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology, 2010(60):2490-2495. |
[9] | 吕倩, 胡江春, 王楠, 王雪梅, 王书锦. 南海深海甲基营养型芽孢杆菌SHB114抗真菌脂肽活性产物的研究. 中国生物防治学报, 2014, 30(01):113-120. |
LÜ Q, HU J C, WANG N, WANG X M, WANG S J. Anti-fungal lipopeptides produced by Bacillus methylotrophicus SHB114 isolated from South China sea . Chinese Journal of Biological Control, 2014, 30(1):113-120. (in Chinese) | |
[10] | 康兴娇, 申红妙, 贾招闪, 杨佳瑶, 冉隆贤, 甄志先. 葡萄霜霉病生防菌甲基营养型芽胞杆菌T3的鉴定及其防治效果. 中国生物防治学报, 2016, 32(6):775-782. |
KANG X J, SHEN H M, JIA Z S, YANG J Y, RAN L X, ZHEN Z X. Identification of Bacillus methylotrophicus T3 and its control effect on grape downy mildew . Chinese Journal of Biological Control, 2016, 32(6):775-782. (in Chinese) | |
[11] | 刘晶晶, 高丽娟, 师建芳, 王小芬, 袁旭峰, 崔宗均. 乳酸菌复合系和植物乳杆菌提高柳枝稷青贮效果. 农业工程学报, 2015, 31(9):295-302. |
LIU J J, GAO L J, SHI J F, WANG X F, YUAN X F, CUI Z J. Lactic acid bacteria community and Lactobacillus plantarum improving silaging effect of switchgrass . Transactions of the Chinese Society for Agricultural Engineering, 2015, 31(9):295-302. (in Chinese) | |
[12] | 王成, 王益, 周玮, 骈瑞琪, 张庆, 陈晓阳. 植物乳杆菌和含水量对辣木叶青贮品质和单宁含量的影响. 草业学报, 2019, 28(6):109-118. |
WANG C, WANG Y, ZHOU W, PIAN R Q, ZHANG Q, CHEN X Y. Effects of Lactobacillus plantarum(LP) and moisture on feed quality and tannin content of Moringa oleifera leaf silage . Acta Prataculturae Sinica, 2019, 28(6):109-118. (in Chinese) | |
[13] | 闫艳华, 王海宽, 肖瑞峰, 宗志友, 沈发迪, 孙瑶, 戚薇. 一株乳酸菌对番茄灰霉病的防效及对几种防御酶活性的影响. 微生物学通报, 2011, 38(12):1801-1806. |
YAN Y H, WANG H K, XIAO R F, ZONG Z Y, SHEN F D, SUN Y, QI W. Bio-control effects of a lactic acid bacteria on tomato botrytis blight and its induction on defense-related enzymes. Microbiology, 2011, 38(12):1801-1806. (in Chinese) | |
[14] | 刘聪, 谯江兰, 仝少杰, 张瑞芳, 周大迈, 张爱军, 王红, 王亚芹. 微生物菌剂对设施甜瓜产量和品质的影响. 江苏农业科学, 2019, 47(19):168-171. |
LIU C, QIAO J L, TONG S J, ZHANG R F, ZHOU D M, ZHANG A J, WANG H, WANG Y Q. Effects of microbial agents on yield and quality of melon in facilities. Jiangsu Agricultural Sciences, 2019, 47(19):168-171. (in Chinese) | |
[15] | 鲁凯珩, 金清, 曹沁, 李珊珊, 孙舒荣, 蒋秋艳, 金杰人, 凌丽晨, 符歆灏, 杜萱, 肖明. 不同微生物菌剂对田间西红柿品质以及土壤酶活性的影响. 上海师范大学学报(自然科学版), 2019, 48(2):197-206. |
LU K H, JING Q, CAO Q, LI S S, SUN S R, JIANG Q Y, JIN J R, LING L C, FU X J, DU X, XIAO M. Effects of different microbial agents on tomato quality and soil enzyme activity. Journal of Shanghai Normal University (Natural Sciences), 2019, 48(2):197-206. (in Chinese) | |
[16] | 高君凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. |
GAO J F. Plant Physiology Experiment Guidance. Beijing: Higher Education Press, 2006. (in Chinese) | |
[17] | 张佼, 屈锋, 朱玉尧, 杨甲甲, 胡晓辉. 增施有机肥和微生物菌剂对春季杨凌设施番茄产量和品质的影响. 西北农业学报, 2019, 28(5):767-773. |
ZHANG J, QU F, ZHU Y Y, YANG J J, HU X H. Effects of more organic fertilizer and microbial agents on yield and quality of spring greenhouse tomato in Yangling. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(5):767-773. (in Chinese) | |
[18] | 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. |
GUAN S Y. Soil Enzyme and Its Research Method. Beijing: Agricultural Publishing House, 1986. (in Chinese) | |
[19] | 鲍士旦. 土壤农化分析第三版. 北京: 中国农业出版社, 2000. |
BAO S D. Third Edition of Soil Agrochemical Analysis (3rd edition). Beijing: China Agricultural Publishing House, 2000. (in Chinese) | |
[20] | 李格, 白由路, 杨俐苹, 卢艳丽, 王磊, 张静静, 张银杰. 华北地区夏玉米滴灌施肥的肥料效应. 中国农业科学, 2019, 52(11):1930-1941. |
LI G, BAI Y L, YANG L P, LU Y L, WANG L, ZHANG J J, ZHANG Y J. Effect of drip fertigation on summer maize in North China. Scientia Agricultura Sinica, 2019, 52(11):1930-1941. (in Chinese) | |
[21] |
BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8):478-486.
doi: 10.1016/j.tplants.2012.04.001 |
[22] | CROWLEY D. Microbial Siderophores in The Plant Rhizosphere. Iron Nutrition in Plants and Rhizospheric Microorganisms: Springer Netherlands, 2006: 169-198. |
[23] | 陆引罡, 谢永平, 湛方栋, 丁美丽. 植烟黄壤微生物生态特征与氮素的矿化和硝化作用. 中国烟草科学, 2010, 31(2):29-33. |
LU Y G, XIE Y P, ZHAN F D, DING M L. Microbial ecological characteristics and nitrogen mineralization and nitrification in tobacco growing yellow soil. Chinese Tobacco Science, 2010, 31(2):29-33. (in Chinese) | |
[24] |
ESITKEN A, PIRLAK L, TURAN M, SAHIN F. Effects of floral and foliar application of plant growth promoting rhizobacteria(PGPR) on yield, growth and nutrition of sweet cherry. Scientia Horticulturae, 2006, 110(4):324-327.
doi: 10.1016/j.scienta.2006.07.023 |
[25] |
HAN J G, SUN L, DONG X Z, CAI Z Q, SUN X L, YANG H L, WANG Y S, SONG W. Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensisHR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Systematic and Applied Microbiology, 2005, 28:66-76.
doi: 10.1016/j.syapm.2004.09.003 |
[26] |
PINEDA A, ZHENG S J, VANLOON J J, PIETERSE M J, DICKE M. Helping plants to deal with insects: The role of beneficial soil-borne microbes. Trends in Plant Science, 2010, 15(9):507-514.
doi: 10.1016/j.tplants.2010.05.007 |
[27] |
MENG Q, JIANG H, HAO J J. Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biological Control, 2016, 98:18-26.
doi: 10.1016/j.biocontrol.2016.03.010 |
[28] |
POONGUZHALI S, MADHAIYAN M, SA T M. Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris spp pekinensis and screening of traits for potential plant growth promotion. Plant Soil, 2016, 286:167-180.
doi: 10.1007/s11104-006-9035-1 |
[29] |
TORAL L, RODRIGUEZ M, BEJAR V, SAMPEDRO I. Antifungal activity of lipopeptides from Bacillus XT1 CECT8661 against Botrytis cinerea. Front Microbiol, 2018, 9:1315.
doi: 10.3389/fmicb.2018.01315 |
[30] | 康少辉, 苏浴源, 栗淑芳, 申领艳, 闫凤岐, 刘晓婕, 吕丽霞. 不同浓度枯草芽孢杆菌对黄瓜秧苗长势和质量的影响. 河北农业科学, 2014, 18(3):52-53, 56. |
KANG S H, SU Y Y, LI S F, SHEN L Y, YAN F Q, LIU X J, LÜ L X. Effects of different concentrations of Bacillus subtilis on the growth and quality of cucumber seedlings . Journal of Hebei Agricultural Sciences, 2014, 18(3):52-53, 56. (in Chinese) | |
[31] | 蒋春良. 解淀粉芽孢杆菌FZB42 sRNA Igr3927的表达和功能研究[D]. 南京: 南京林业大学, 2015. |
JIANG C L. Bacillus amyloliquefaciens FZB42 sRNA Igr3927 transcription analysis[D]. Nanjing: Nanjing Forestry University, 2015. (in Chinese) | |
[32] | 杨文香, 张汀, 刘大群. 三株链霉菌对黄瓜白粉病及黄瓜生长的影响. 河北农业大学学报, 2005, 28(4):80-83, 92. |
YANG W X, ZHANG D, LIU D Q. Effects of three Streptomycesstrains on the growth of cucumber plant and against cucumber powdery mildew . Journal of Agricultural University of Hebei, 2005, 28(4):80-83, 92. (in Chinese) | |
[33] | 朱金英. 微生物菌剂在设施黄瓜和番茄上的应用效果研究[D]. 泰安: 山东农业大学, 2014. |
ZHU J Y. Study on the application of microbial agents in cucumber and tomato cultivated in greenhouse[D]. Tai’an: Shandong Agricultural University, 2014. (in Chinese) | |
[34] | 张翠绵, 李洪涛, 李晓芝, 贾楠, 胡栋, 王占武. 链霉菌S506对设施黄瓜根际生态和生产性状的影响. 中国农业科技导报, 2010, 12(5):98-102. |
ZHANG C M, LI H T, LI X Z, JIA N, HU D, WANG Z W. Effect of Streptomyces sp. S06 on rhizosphere ecosystem and production traits of cucumber in facilities . Journal of Agricultural Science and Technology, 2010, 12(5):98-102. (in Chinese) | |
[35] | 陆雅海, 张福锁. 根际微生物研究进展. 土壤, 2006, 38(2):113-121. |
LU Y H, ZHANG F S. The advances in rhizosphere microbiology. Soil, 2006, 38(2):113-121. (in Chinese) | |
[36] | 庞强强, 蔡兴来, 周曼, 赵枢纽, 李德明. 微生物菌肥对设施白菜生长、品质和土壤酶活性的影响. 热带农业科学, 2018, 38(4):20-23. |
PANG Q Q, CAI X L, ZHOU M, ZHAO S N, LI D M. Effects of microbial fertilizer on the growth, quality and soil enzyme activities of pakchoi in the solar greenhouse. Chinese Journal of Tropical Agriculture, 2018, 38(4):20-23. (in Chinese) | |
[37] | 闫杨, 刘月静, 王帅珂, 曲辉, 范治平, 韩军, 程文静, 陈芳. 生防芽孢杆菌对黄瓜根际土壤酶活性的影响. 江苏农业科学, 2019, 47(7):108-111. |
YAN Y, LIU Y J, WANG S K, QÜ H, FAN Z P, HAN J, CHENG W J, CHEN F. Effect of biocontrol bacillus on the enzyme activity of the rhizosphere soil of cucumber. Jiangsu Agricultural Sciences, 2019, 47(7):108-111. (in Chinese) |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[6] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[7] | 冯向前,殷敏,王孟佳,马横宇,褚光,刘元辉,徐春梅,章秀福,张运波,王丹英,陈松. 南方稻区“早籼晚粳”栽培模式晚季灌浆期气象因子对晚粳稻品质的影响[J]. 中国农业科学, 2023, 56(1): 46-63. |
[8] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[9] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[10] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[11] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[12] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[13] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[14] | 李青林,张文涛,徐慧,孙京京. 低磷胁迫下黄瓜木质部与韧皮部汁液的代谢物变化[J]. 中国农业科学, 2022, 55(8): 1617-1629. |
[15] | 朱大伟,章林平,陈铭学,方长云,于永红,郑小龙,邵雅芳. 中国优质稻品种品质及食味感官评分值的特征[J]. 中国农业科学, 2022, 55(7): 1271-1283. |
|