中国农业科学 ›› 2021, Vol. 54 ›› Issue (8): 1761-1771.doi: 10.3864/j.issn.0578-1752.2021.08.015
王光宇1(),李晴1,唐文倩1,王虎虎2,徐幸莲2(
),邱伟芬1
收稿日期:
2020-08-14
接受日期:
2020-10-14
出版日期:
2021-04-16
发布日期:
2021-04-25
通讯作者:
徐幸莲
作者简介:
王光宇,E-mail: 基金资助:
WANG GuangYu1(),LI Qing1,TANG WenQian1,WANG HuHu2,XU XingLian2(
),QIU WeiFen1
Received:
2020-08-14
Accepted:
2020-10-14
Online:
2021-04-16
Published:
2021-04-25
Contact:
XingLian XU
摘要:
【目的】研究nuoB对莓实假单胞菌菌体特性及其对冷鲜鸡肉致腐能力的影响,为揭示nuoB介导的冷鲜鸡肉腐败机制,开发新型保鲜技术提供理论依据。【方法】通过构建nuoB插入失活突变株,对比野生株和突变株在体外培养条件下的生长曲线、聚集性、泳动性和生物被膜形成能力;以及原位培养条件对冷鲜鸡肉的致腐特征,包括菌落总数、挥发性盐基氮(TVBN)含量、pH和感官评分,探讨nuoB对莓实假单胞菌生理特性和致腐作用的影响。【结果】体外培养条件下,nuoB并未影响莓实假单胞菌的生长能力、聚集性和swarming泳动性,但突变株的swimming泳动性和生物被膜形成能力在培养过程中显著下降。原位条件下,对冷鲜鸡肉致腐能力的评估发现两组样品菌落总数差异不显著,均达到了10 lg CFU·g-1;突变株组在冷鲜鸡肉储藏期间TVBN均显著低于野生株组,在第4天时才超过国家标准限量15 mg/100 g,培养末期的最大值约为野生株组的1/2;培养前2 d所有样品的pH均处于正常范围内,突变株组的pH从培养第5天开始显著低于野生株组;感官评价结果显示培养第4天时的两组样品均出现了黏液和异味,被判定为腐败,但突变株组样品稍弱于野生株组。【结论】nuoB的破坏没有影响莓实假单胞菌的生长能力,但抑制了菌株的泳动性、生物被膜形成和对冷鲜鸡肉的致腐能力。
王光宇,李晴,唐文倩,王虎虎,徐幸莲,邱伟芬. nuoB对莓实假单胞菌生理特性及在冷鲜鸡肉中致腐能力的影响[J]. 中国农业科学, 2021, 54(8): 1761-1771.
WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken[J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
表1
本研究中所用的引物"
引物 Primer | 序列(5′-3′) Sequence (5′-3′) |
---|---|
nuoB-F | ATATCTAGACCTGCATAGACATTGATGGAGGTTCTAC AAC |
nuoB-R | ATATCTAGACTTGATCATCACGTCGCTGTTACGTTC |
Kpn-Kn-F | ATATATATGGTACCGGAATAGGGAACTTCAAGATCCC CTC |
Kpn-Kn-R | ATATATATGGTACCAGAGCGCTTTTGAAGCTGG |
nuoB-outF | GAGGCCTGCGACATAGCGACACAAC |
nuoB-outR | CAGACTTCGCGCTCGTACCAGTTGG |
下划线代表限制性内切酶酶切位点 Underline sequences are cleavage sites of restriction enzyme |
[1] |
CASABURI A, PIOMBINO P, NYCHAS G J, VILLANI F, ERCOLINI D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiology, 2015,45:83-102.
pmid: 25481065 |
[2] | PELLISSERY A J, VINAYAMOHAN P G, AMALARADJOU M A R, VENKITANARAYANAN K. Spoilage Bacteria and Meat Quality. Meat Quality Analysis. Elsevier, 2020: 307-334. |
[3] | MOHAREB F, IRIONDO M, DOULGERAKI A I, VAN HOEK A, AARTS H, CAUCHI M, NYCHAS G J E. Identification of meat spoilage gene biomarkers in Pseudomonas putida using gene profiling. Food Control, 2015,57:152-160. |
[4] | NYCHAS G J E, SKANDAMIS P N, TASSOU C C, KOUTSOUMANIS K P. Meat spoilage during distribution. Meat Science, 2008,78(1/2):77-89. |
[5] | ERCOLINI D, CASABURI A, NASI A, FERROCINO I, DI MONACO R, FERRANTI P, MAURIELLO G, VILLANI F. Different molecular types of Pseudomonas fragi have the same overall behaviour as meat spoilers. International Journal of Food Microbiology, 2010,142(1/2):120-131. |
[6] |
WANG G Y, MA F, WANG H H, XU X L, ZHOU G H. Characterization of extracellular polymeric substances produced by Pseudomonas fragi under air and modified atmosphere packaging. Journal of Food Science, 2017,82(9):2151-2157.
pmid: 28869650 |
[7] | CALDERA L, FRANZETTI L V, VAN COILLIE E, DE VOS P, STRAGIER P, DE BLOCK J, HEYNDRICKX M. Identification, enzymatic spoilage characterization and proteolytic activity quantification of Pseudomonas spp. isolated from different foods. Food Microbiology, 2016,54:142-153. |
[8] |
WANG G Y, MA F, CHEN X J, HAN Y Q, WANG H H, XU X L, ZHOU G H. Transcriptome analysis of the global response of Pseudomonas fragi NMC25 to modified atmosphere packaging stress. Frontiers in Microbiology, 2018,9:1277.
pmid: 29942299 |
[9] | BRANDT U. Energy converting NADH: Quinone oxidoreductase (complex I). Annual Review of Biochemistry, 2006,75:69-92. |
[10] | ERHARDT H, STEIMLE S, MUDERS V, POHL T, WALTER J, FRIEDRICH T. Disruption of individual nuo-genes leads to the formation of partially assembled NADH: Ubiquinone oxidoreductase (complex I) in Escherichia coli. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2012,1817(6):863-871. |
[11] | FRIEDRICH T, DEKOVIC D K, BURSCHEL S. Assembly of the Escherichia coli NADH: ubiquinone oxidoreductase (respiratory complex I). Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2016,1857(3):214-223. |
[12] | SCHNEIDER D, POHL T, WALTER J, D RNER DT M, BERGER A, SPEHR V, FRIEDRICH T. Assembly of the Escherichia coli NADH: ubiquinone oxidoreductase (complex I). Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2008,1777(7/8):735-739. |
[13] | SPERO M A, AYLWARD F O, CURRIE C R, DONOHUE T J. Phylogenomic analysis and predicted physiological role of the proton-translocating NADH: quinone oxidoreductase (complex I) across bacteria. mBio, 2015,6(2):e00389-15. |
[14] |
SAZANOV L A. The mechanism of coupling between electron transfer and proton translocation in respiratory complex I. Journal of Bioenergetics and Biomembranes, 2014,46(4):247-253.
doi: 10.1007/s10863-014-9554-z pmid: 24943718 |
[15] | KUSSMAUL L, HIRST J. The mechanism of superoxide production by NADH: Ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proceedings of the National Academy of Sciences, 2006,103(20):7607-7612. |
[16] | FUKUI H, MORAES C T. The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis. Trends in Neurosciences, 2008,31(5):251-256. |
[17] | RHEIN V, SONG X, WIESNER A, ITTNER L M, BAYSANG G, MEIER F, OZMEN L, BLUETHMANN H, DR SE S, BRANDT U. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proceedings of the National Academy of Sciences, 2009,106(47):20057-20062. |
[18] |
LIN M T, BEAL M F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006,443(7113):787-795.
pmid: 17051205 |
[19] | ZICKERMANN V, WIRTH C, NASIRI H, SIEGMUND K, SCHWALBE H, HUNTE C, BRANDT U. Mechanistic insight from the crystal structure of mitochondrial complex I. Science, 2015,347(6217):44-49. |
[20] |
VINOTHKUMAR K R, ZHU J P, HIRST J. Architecture of mammalian respiratory complex I. Nature, 2014,515(7525):80-84.
pmid: 25209663 |
[21] |
TICHI M A, MEIJER W G, TABITA F R. Complex I and its involvement in redox homeostasis and carbon and nitrogen metabolism in Rhodobacter capsulatus. Journal of Bacteriology, 2001,183(24):7285-7294.
doi: 10.1128/JB.183.24.7285-7294.2001 pmid: 11717288 |
[22] |
WEERAKOON D R, OLSON J W. The Campylobacter jejuni NADH: Ubiquinone oxidoreductase (complex I) utilizes flavodoxin rather than NADH. Journal of Bacteriology, 2008,190(3):915-925.
doi: 10.1128/JB.01647-07 pmid: 18065531 |
[23] | WELTE C, DEPPENMEIER U. Membrane-bound electron transport in Methanosaeta thermophila. Journal of Bacteriology, 2011,193(11):2868-2870. |
[24] | BATTCHIKOVA N, EISENHUT M, ARO E M. Cyanobacterial NDH-1 complexes: Novel insights and remaining puzzles. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2011,1807(8):935-944. |
[25] |
WANG G Y, LI M, MA F, WANG H H, XU X L, ZHOU G H. Physicochemical properties of Pseudomonas fragi isolates response to modified atmosphere packaging. FEMS Microbiology Letters, 364(11): fnx106.
pmid: 33693760 |
[26] |
XU H, ZOU Y Y, LEE H Y, AHN J. Effect of NaCl on the biofilm formation by foodborne pathogens. Journal of Food Science, 2010,75(9):M580-M585.
doi: 10.1111/j.1750-3841.2010.01865.x pmid: 21535614 |
[27] | CONG Y G, WANG J, CHEN Z J, XIONG K, XU Q W, HU F Q. Characterization of swarming motility in Citrobacter freundii. FEMS Microbiology Letters, 2011,317(2):160-171. |
[28] |
HIDALGO G, CHAN M, TUFENKJI N. Inhibition of Escherichia coli CFT073 fliC expression and motility by cranberry materials. Applied and Environmental Microbiology, 2011,77(19):6852-6857.
doi: 10.1128/AEM.05561-11 pmid: 21821749 |
[29] | 王虎虎. 肉源沙门氏菌生物菌膜的形成及转移规律研究[D]. 南京: 南京农业大学, 2014. |
WANG H H. Biofilm formation of meat-borne Salmonella and its transferring[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese) | |
[30] | 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中挥发性盐基氮的测定: GB 5009.228-2016. 北京: 中国标准出版社, 2017. |
National Health and Family Planning Commission. National Food Safety Standard Determination of TVBN in foods: GB 5009.228-2016. Beijing: Standards Press of China, 2017. (in Chinese) | |
[31] | KANG Z L, WANG P, XU X L, ZHU C Z, ZOU Y F, LI K, ZHOU G H. Effect of a beating process, as a means of reducing salt content in Chinese-style meatballs (kung-wan): A dynamic rheological and Raman spectroscopy study. Meat Science, 2014,96(2):669-674. |
[32] | ZHANG X X, WANG H H, LI N, LI M, XU X L. High CO2-modified atmosphere packaging for extension of shelf-life of chilled yellow- feather broiler meat: A special breed in Asia. LWT-Food Science and Technology, 2015,64(2):1123-1129. |
[33] |
PENNACCHIA C, ERCOLINI D, VILLANI F. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiology, 2011,28(1):84-93.
pmid: 21056779 |
[34] |
ZOTTA T, PARENTE E, IANNIELLO R G, DE FILIPPIS F, RICCIARDI A. Dynamics of bacterial communities and interaction networks in thawed fish fillets during chilled storage in air. International Journal of Food Microbiology, 2019,293:102-113.
doi: 10.1016/j.ijfoodmicro.2019.01.008 pmid: 30677559 |
[35] | 张若煜, 董鹏程, 朱立贤, 毛衍伟, 罗欣, 张一敏, 韩明山, 韩广星. 生鲜肉中假单胞菌致腐机制的研究进展. 食品科学, 2020,41(17):291-297. |
ZHANG R Y, DONG P C, ZHU L X, MAO Y W, LUO X, ZHANG Y M, HAN M S, HAN G X. Progress in understanding the mechanism by which Pseudomonas spp. causes the spoilage of raw meat. Food Science, 2020,41(17):291-297. (in Chinese) | |
[36] | FLEMMING D, HELLWIG P, FRIEDRICH T. Involvement of Tyrosines 114 and 139 of Subunit NuoB in the Proton Pathway around Cluster N2 in Escherichia coli NADH: Ubiquinone Oxidoreductase. Journal of Biological Chemistry, 2003,278(5):3055-3062. |
[37] |
PRUESS B, NELMS J M, PARK C, WOLFE A J. Mutations in NADH: Ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. Journal of Bacteriology, 1994,176(8):2143-2150.
doi: 10.1128/jb.176.8.2143-2150.1994 pmid: 8157582 |
[38] | 王光宇. 气调包装对冷鲜鸡肉中莓实假单胞菌致腐效应的抑制机制[D]. 南京: 南京农业大学, 2018. |
WANG G Y. Inhibition mechanisms of MAP against chilled chicken spoilage associated with Pseudomonas fragi[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese) | |
[39] |
DOULGERAKI A I, ERCOLINI D, VILLANI F, NYCHAS G J E. Spoilage microbiota associated to the storage of raw meat in different conditions. International Journal of Food Microbiology, 2012,157(2):130-141.
doi: 10.1016/j.ijfoodmicro.2012.05.020 |
[40] |
LEBERT I, BEGOT C, LEBERT A. Growth of Pseudomonas fluorescens and Pseudomonas fragi in a meat medium as affected by pH (5.8-7.0), water activity (0.97-1.00) and temperature (7-25℃). International Journal of Food Microbiology, 1998,39(1/2):53-60.
doi: 10.1016/S0168-1605(97)00116-5 |
[41] | 张雯, 卞丹, 阮成旭, 时祥柱, 倪莉. 大黄鱼源腐败菌的黏附特性与生物膜特性分析. 食品科学, 2019,40(14):84-90. |
ZHANG W, BIAN D, RUAN C X, SHI X Z, NI L. Adhesive properties and biofilm characteristics of Pseudosciaena crocea spoilage bacteria. Food Science, 2019,40(14):84-90. (in Chinese) | |
[42] |
DI BONAVENTURA G, PICCOLOMINI R, PALUDI D, D’ORIO V, VERGARA A, CONTER M, IANIERI A. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. Journal of Applied Microbiology, 2008,104(6):1552-1561.
doi: 10.1111/j.1365-2672.2007.03688.x pmid: 18194252 |
[43] | GRZEŚKOWIAK Ł, COLLADO M C, SALMINEN S. Evaluation of aggregation abilities between commensal fish bacteria and pathogens. Aquaculture, 2012,356:412-414. |
[44] |
KALMOKOFF M, LANTHIER P, TREMBLAY T-L, FOSS M, LAU P C, SANDERS G, AUSTIN J, KELLY J, SZYMANSKI C M. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. Journal of Bacteriology, 2006,188(12):4312-4320.
doi: 10.1128/JB.01975-05 pmid: 16740937 |
[45] |
LIU D S, LIANG L, XIA W S, REGENSTEIN J M, ZHOU P. Biochemical and physical changes of grass carp (Ctenopharyngodon idella) fillets stored at -3 and 0℃. Food Chemistry, 2013,140(1/2):105-114.
doi: 10.1016/j.foodchem.2013.02.034 |
[46] |
WANG G Y, MA F, ZENG L Y, BAI Y, WANG H H, XU X L, ZHOU G H. Modified atmosphere packaging decreased Pseudomonas fragi cell metabolism and extracellular proteolytic activities on meat. Food Microbiology, 2018,76:443-449.
doi: 10.1016/j.fm.2018.07.007 pmid: 30166172 |
[47] |
BARBUT S, ZHANG L, MARCONE M. Effects of pale, normal, and dark chicken breast meat on microstructure, extractable proteins, and cooking of marinated fillets. Poultry Science, 2005,84(5):797-802.
doi: 10.1093/ps/84.5.797 pmid: 15913193 |
[48] |
COOMBS C E, HOLMAN B W, FRIEND M A, HOPKINS D L. Long-term red meat preservation using chilled and frozen storage combinations: A review. Meat Science, 2017,125:84-94.
doi: 10.1016/j.meatsci.2016.11.025 pmid: 27918929 |
[49] |
ODEYEMI O A, ALEGBELEYE O O, STRATEVA M, STRATEV D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety, 2020,19(2):311-331.
doi: 10.1111/1541-4337.12526 pmid: 33325162 |
[50] |
WANG G Y, WANG H H, HAN Y W, XING T, YE K P, XU X L, ZHOU G H. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiology, 2017,63:139-146.
doi: 10.1016/j.fm.2016.11.015 pmid: 28040161 |
[51] |
BJORKROTH J, KORKEALA H. Ropy slime-producing Lactobacillus sake strains possess a strong competitive ability against a commercial biopreservative. International Journal of Food Microbiology, 1997,38(2/3):117-123.
doi: 10.1016/S0168-1605(97)00097-4 |
[52] |
JAFFRES E, LALANNE V, MACE S, CORNET J, CARDINAL M, S ROT T, DOUSSET X, JOFFRAUD J J. Sensory characteristics of spoilage and volatile compounds associated with bacteria isolated from cooked and peeled tropical shrimps using SPME-GC-MS analysis. International Journal of Food Microbiology, 2011,147(3):195-202.
doi: 10.1016/j.ijfoodmicro.2011.04.008 |
[53] |
JOFFRAUD J J, CARDINAL M, CORNET J, CHASLES J S, LÉON S, GIGOUT F, LEROI F. Effect of bacterial interactions on the spoilage of cold-smoked salmon. International Journal of Food Microbiology, 2006,112(1):51-61.
doi: 10.1016/j.ijfoodmicro.2006.05.014 pmid: 16949172 |
[1] | 刘瑞, 赵羽涵, 付忠举, 顾欣怡, 王艳霞, 靳学慧, 杨莹, 吴伟怀, 张亚玲. 黑龙江省和海南省PWL基因家族在稻瘟病菌中的分布及变异[J]. 中国农业科学, 2023, 56(2): 264-274. |
[2] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[3] | 张克坤,陈可钦,李婉平,乔浩蓉,张俊霞,刘凤之,房玉林,王海波. 灌水量对限根栽培‘阳光玫瑰’葡萄果实发育与香气物质积累的影响[J]. 中国农业科学, 2023, 56(1): 129-143. |
[4] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[5] | 莫文静,朱嘉伟,何新华,余海霞,江海玲,覃柳菲,张艺粒,李雨泽,罗聪. 芒果MiZAT10A和MiZAT10B功能分析[J]. 中国农业科学, 2023, 56(1): 193-202. |
[6] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[7] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[8] | 赵海霞,肖欣,董玘鑫,吴花拉,李成磊,吴琦. 苦荞愈伤遗传转化体系的优化及用于FtCHS1的过表达分析[J]. 中国农业科学, 2022, 55(9): 1723-1734. |
[9] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[10] | 汪文娟,苏菁,陈深,杨健源,陈凯玲,冯爱卿,汪聪颖,封金奇,陈炳,朱小源. 广东省侵染美香占2号的稻瘟病菌致病性及无毒基因变异分析[J]. 中国农业科学, 2022, 55(7): 1346-1358. |
[11] | 刘教,刘畅,陈进,王勉之,熊文广,曾振灵. 多重耐药大肠杆菌中前噬菌体的分布特征及诱导分离[J]. 中国农业科学, 2022, 55(7): 1469-1478. |
[12] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[13] | 巢成生,王玉乾,沈欣杰,代晶,顾炽明,李银水,谢立华,胡小加,秦璐,廖星. 甘蓝型油菜苗期氮高效吸收转运特征研究[J]. 中国农业科学, 2022, 55(6): 1172-1188. |
[14] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[15] | 王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 鲜食葡萄果实单萜合成关键基因的eQTL分析[J]. 中国农业科学, 2022, 55(5): 977-990. |
|