中国农业科学 ›› 2020, Vol. 53 ›› Issue (15): 3120-3133.doi: 10.3864/j.issn.0578-1752.2020.15.012
赵晴月1(),许世杰1,张务帅2,张哲1,姚智2,陈新平2,邹春琴1()
收稿日期:
2019-09-18
接受日期:
2020-02-13
出版日期:
2020-08-01
发布日期:
2020-08-06
通讯作者:
邹春琴
作者简介:
赵晴月,Tel:15210169662;E-mail: 基金资助:
ZHAO QingYue1(),XU ShiJie1,ZHANG WuShuai2,ZHANG Zhe1,YAO Zhi2,CHEN XinPing2,ZOU ChunQin1()
Received:
2019-09-18
Accepted:
2020-02-13
Online:
2020-08-01
Published:
2020-08-06
Contact:
ChunQin ZOU
摘要:
【目的】分析中国玉米主产区耕层土壤养分含量现状、区域空间变异规律及其影响因素,以期为各地玉米田土壤养分调控和合理施肥提供指导。【方法】以全国玉米主产区为研究区,于2017年玉米收获季开展大规模土壤采集和农户调研工作。结合地统计学和地理信息系统(GIS),探究土壤养分的区域变异特征和分布格局;根据相关分级标准,评价玉米主产区当前土壤肥力现状;并通过相关性分析和方差分析,对引起土壤养分变异的主要影响因素(土壤质地、气候和肥料施用)进行探讨。【结果】中国玉米主产区耕层土壤pH中值为 6.9,养分含量的中值分别为有机质21.0 g·kg-1、全氮1.5 g·kg-1、有效磷22.4 mg·kg-1和速效钾164.5 mg·kg-1,上述指标的变异系数分别为12.7%、48.5%、50.0%、83.6%和52.0%,均表现为中等程度变异。土壤有机质、全氮、有效磷和速效钾含量主要集中在中等至极高肥力水平,共占主产区总面积的93.5%。土壤养分存在明显的区域变异性,土壤有机质、全氮和有效磷含量在东北春玉米区最高,分别为32.0 g·kg-1、2.2 g·kg-1、32.3 mg·kg-1,在西北春玉米区最低,分别为17.2 g·kg-1、1.2 g·kg-1、16.2 mg·kg-1;速效钾含量在西南玉米区最低,其他3个区域无显著差异。在国家尺度上,土壤pH值具有强烈的空间自相关性(块基比<25%),其变异主要受自然因素(土壤质地和降水)影响;有效磷具有较弱的空间自相关性(块基比>75%),其变异主要受人为因素(肥料施用)影响;有机质、全氮和速效钾具有中等的空间自相关性(块基比25%—75%),其变异受自然和人为因素共同影响。【结论】东北区土壤肥力高,玉米生产应适量减少施肥量,以节约肥料成本;华北区土壤养分含量适中,应严格控制氮、磷化肥投入,以增加肥料利用率并减少环境污染;西北区土壤养分含量较低,可以适当增加肥料用量进一步实现玉米增产;西南区内土壤肥力变异较大,各亚区应采用适宜的施肥方式,以提高土壤的保肥能力和玉米产量。
赵晴月,许世杰,张务帅,张哲,姚智,陈新平,邹春琴. 中国玉米主产区土壤养分的空间变异及影响因素分析[J]. 中国农业科学, 2020, 53(15): 3120-3133.
ZHAO QingYue,XU ShiJie,ZHANG WuShuai,ZHANG Zhe,YAO Zhi,CHEN XinPing,ZOU ChunQin. Spatial Regional Variability and Influential Factors of Soil Fertilities in the Major Regions of Maize Production of China[J]. Scientia Agricultura Sinica, 2020, 53(15): 3120-3133.
表1
全国玉米主产区土壤养分含量描述性统计"
土壤养分 Soil fertility | 样品数 Sample size | 分布类型 Distribution types | 中值 Median | 5%—95%置信区间 5%-95% confidence interval | 均值 Mean | 标准差 Standard derivation | 变异系数 Variance coefficient (%) | 偏度 Skewness | 峰度 Kurtosis |
---|---|---|---|---|---|---|---|---|---|
pH | 980 | 对数正态 Lognormal | 6.9 | 5.1—7.9 | 6.8 | 0.9 | 12.7 | -0.70 | -0.11 |
有机质 Organic matter (g·kg-1) | 980 | 对数正态 Lognormal | 21.0 | 10.7—48.6 | 23.9 | 11.6 | 48.5 | 1.62 | 3.26 |
全氮 Total N (g·kg-1) | 980 | 对数正态 Lognormal | 1.5 | 0.7—3.5 | 1.7 | 0.9 | 50.0 | 1.48 | 2.70 |
有效磷 Olsen-P (mg·kg-1) | 980 | 偏态 Skewed | 22.4 | 4.6—84.2 | 30.5 | 25.5 | 83.6 | 1.66 | 2.90 |
速效钾 Available K (mg·kg-1) | 980 | 偏态 Skewed | 164.5 | 66.0—358.9 | 183.8 | 95.5 | 52.0 | 1.55 | 5.59 |
表2
我国玉米主产区各区域土壤养分含量差异"
区域 Region | 样本量 Sample size | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 有效磷 Olsen-P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
中值 Median | 5%—95%置信区间 5%-95% confidence interval | 中值 Median | 5%—95% 置信区间 5%-95% confidence interval | 中值 Median | 5%—95% 置信区间 5%-95% confidence interval | 中值 Median | 5%—95% 置信区间 5%-95% confidence interval | 中值 Median | 5%—95% 置信区间 5%-95% confidence interval | ||
I-1 | 82 | 6.5 | 5.4—7.4 | 44.6 | 22.0—71.2 | 3.1 | 1.2—5.1 | 28.2 | 8.2—80.2 | 208.7 | 87.7—357.9 |
I-2 | 90 | 6.0 | 4.6—7.0 | 32.2 | 16.6—43.3 | 2.3 | 1.0—3.5 | 42.5 | 8.4—93.2 | 195.1 | 80.5—436.0 |
I-3 | 25 | 6.8 | 5.8—7.3 | 25.6 | 13.7—42.8 | 1.5 | 1.0—2.9 | 26.4 | 3.8—62.0 | 154.2 | 95.0—329.6 |
I-4 | 59 | 6.5 | 4.8—7.5 | 17.0 | 11.5—33.6 | 1.3 | 0.8—2.6 | 25.4 | 5.6—134.9 | 119.3 | 60.4—414.4 |
东北区 I The region of the Northeast China I | 256 | 6.4 | 5.0—7.3 | 32.0 | 13.0—58.0 | 2.2 | 0.9—4.5 | 32.3 | 7.2—95.8 | 175.6 | 74.2—377.7 |
II-1 | 265 | 7.3 | 5.5—8.0 | 20.4 | 12.8—28.4 | 1.5 | 0.8—2.2 | 24.4 | 5.5—92.7 | 183.1 | 80.6—346.6 |
II-2 | 55 | 6.8 | 5.1—7.3 | 20.3 | 11.2—27.4 | 1.4 | 0.7—2.1 | 20.7 | 5.2—70.7 | 154.0 | 52.2—324.7 |
华北区II The region of the North China Plain II | 320 | 7.2 | 5.4—7.9 | 20.3 | 12.7—28.3 | 1.4 | 0.8—2.2 | 23.6 | 5.3—86.8 | 176.2 | 72.6—345.4 |
III-1 | 92 | 7.6 | 6.6—8.0 | 17.4 | 10.7—32.0 | 1.3 | 0.7—2.3 | 15.2 | 4.0—46.5 | 171.6 | 103.3—316.3 |
III-2 | 110 | 7.5 | 6.9—8.1 | 17.0 | 6.6—34.6 | 1.2 | 0.5—2.6 | 18.1 | 4.2—64.6 | 138.2 | 44.8—323.2 |
III-3 | 20 | 7.2 | 6.6—7.5 | 17.4 | 10.2—40.4 | 1.2 | 0.6—3.0 | 8.6 | 1.9—55.2 | 385.6 | 201.8—832.5 |
西北区III The region of the Northwest China III | 222 | 7.5 | 6.8—8.0 | 17.2 | 8.1—33.2 | 1.2 | 0.6—2.4 | 16.2 | 4.2—61.0 | 162.5 | 63.0—398.1 |
IV-1 | 33 | 6.6 | 5.1—7.0 | 13.6 | 7.5—27.4 | 1.1 | 0.5—2.0 | 9.3 | 0.5—54.5 | 132.9 | 54.2—313.9 |
IV-2 | 92 | 6.4 | 4.5—7.4 | 21.8 | 11.8—42.7 | 1.6 | 0.8—3.4 | 18.2 | 1.7—93.6 | 138.8 | 46.8—334.0 |
IV-3 | 57 | 6.4 | 4.6—7.7 | 31.6 | 13.4—72.7 | 2.3 | 0.9—4.6 | 28.5 | 3.3—96.8 | 162.0 | 63.2—377.0 |
西南区IV The region of the Southwest China IV | 182 | 6.4 | 4.6—7.4 | 22.4 | 10.5—53.6 | 1.6 | 0.7—3.8 | 18.3 | 1.9—94.5 | 141.8 | 49.2—340.4 |
表4
全国玉米主产区土壤养分含量的空间变异特征"
土壤养分 Soil fertility | 理论模型 Theory model | 块金值 Nugget | 基台值 Sill | 块基比 Nugget/Sill (%) | 变程 Range (km) | 决定系数 R2 | 残差 RSS |
---|---|---|---|---|---|---|---|
pH | 指数 Exponential | 0.00101 | 0.00426 | 23.7 | 2319 | 0.593 | 5.708E-06 |
有机质 Organic matter | 高斯 Gaussian | 0.0204 | 0.0626 | 32.6 | 4108 | 0.904 | 3.253E-04 |
全氮 Total N | 高斯 Gaussian | 0.026 | 0.0657 | 39.6 | 4117 | 0.909 | 2.708E-04 |
有效磷 Olsen-P | 线性 Linear | 0.0814 | 0.108 | 75.4 | 4252 | 0.778 | 7.680E-04 |
速效钾 Available K | 线性 Linear | 0.0687 | 0.0944 | 72.8 | 4252 | 0.449 | 1.072E-03 |
表5
全国玉米主产区土壤养分含量等级情况"
土壤养分 Soil fertility | 项目 Item | 极高 Extremely high | 高 High | 中 Middle | 低 Low |
---|---|---|---|---|---|
有机质 Organic matter | 分级标准 Grading standard (g·kg-1) | ≥40 | 20—40 | 10—20 | <10 |
百分比 Area percentage (%) | 2.84 | 40.90 | 56.26 | 0.00 | |
全氮Total N | 分级标准 Grading standard (g·kg-1) | ≥2 | 1—2 | 0.75—1 | <0.75 |
百分比 Area percentage (%) | 13.83 | 81.96 | 4.21 | 0.00 | |
有效磷Olsen-P | 分级标准 Grading standard (mg·kg-1) | ≥40 | 25—40 | 10—25 | <10 |
百分比 Area percentage (%) | 7.21 | 19.30 | 67.02 | 6.47 | |
速效钾Available K | 分级标准 Grading standard (mg·kg-1) | ≥150 | 120—150 | 90—120 | <90 |
百分比 Area percentage (%) | 67.90 | 19.32 | 11.49 | 1.29 |
表6
不同区域土壤养分含量与气象因素的相关分析"
区域 Region | 影响因素 Factor | pH | 有机质 Organic matter | 全氮 Total N | 有效磷 Olsen-P | 速效钾 Available K |
---|---|---|---|---|---|---|
东北区I The region of the Northeast China I | 平均气温 Average temperature | -0.006 | -0.775** | -0.742** | 0.098 | -0.291 |
年降水量 Total precipitation | -0.439** | -0.123 | -0.112 | 0.437** | -0.170 | |
年蒸发量 Total evaporation | -0.017 | -0.754** | -0.721** | 0.098 | -0.309* | |
华北区II The region of the North China Plain II | 平均气温 Average temperature | 0.043 | 0.071 | -0.061 | -0.172 | -0.043 |
年降水量 Total precipitation | -0.397** | -0.145 | -0.179 | 0.069 | -0.181 | |
年蒸发量 Total evaporation | -0.177 | -0.318* | -0.256* | 0.116 | 0.157 | |
西北区III The region of the Northwest China III | 平均气温 Average temperature | 0.103 | 0.298 | 0.276 | 0.000 | -0.176 |
年降水量 Total precipitation | -0.107 | -0.245 | -0.250 | -0.009 | -0.171 | |
年蒸发量 Total evaporation | 0.171 | 0.004 | -0.028 | 0.148 | -0.107 | |
西南区IV The region of the Southwest China IV | 平均气温 Average temperature | -0.223 | -0.241 | -0.197 | 0.225 | -0.322 |
年降水量 Total precipitation | -0.350* | 0.015 | 0.008 | 0.164 | -0.596** | |
年蒸发量 Total evaporation | -0.219 | 0.341* | 0.348* | 0.550** | 0.014 |
表7
全国玉米主产区氮、磷、钾养分投入量"
区域 Region | 养分投入量 Fertilizer rate (kg·hm-2) | ||
---|---|---|---|
氮 N | 磷 P2O5 | 钾 K2O | |
东北区I The region of the Northeast China I | 239.0±90.0 | 106.1±57.8 | 95.2±54.9 |
I-1 | 227.8±94.6 | 88.5±50.9 | 72.6±49.9 |
I-2 | 247.8±66.6 | 117.8±44.5 | 109±38.0 |
I-3 | 212.9±71.8 | 88.9±52.4 | 85.8±60.7 |
I-4 | 248.3±120.4 | 113.5±78.6 | 100.3±71.8 |
华北区II The region of the North China Plain II | 224.7±89.9 | 71.6±45.6 | 66.7±39.8 |
II-1 | 216.4±87.3 | 70.6±45.3 | 64.9±39.0 |
II-2 | 294.4±81.4 | 79.9±47.5 | 81.7±44.1 |
西北区III The region of the Northwest China III | 330.1±132.9 | 158.4±90.9 | 79.3±69.5 |
III-1 | 306.0±108.8 | 132.1±88.1 | 77.6±59.2 |
III-2 | 335.7±132.7 | 166.5±90.7 | 69.0±66.0 |
III-3 | 384.7±178.1 | 210.0±71.5 | 122.7±92.6 |
西南区IV The region of the Southwest China IV | 308.6±133.9 | 97.4±59.8 | 94.4±60.0 |
IV-1 | 327.7±155.3 | 91.8±71.3 | 82.1±63.9 |
IV-2 | 276.5±126.8 | 100.8±55.9 | 106.9±53.5 |
IV-3 | 341.5±111.4 | 97.3±54.2 | 86.2±62.7 |
全国 China | 270.9±120.0 | 106.8±72.4 | 82.7±57.3 |
[1] | 董树亭, 张吉旺. 建立玉米产业技术体系, 加快玉米生产发展. 玉米科学, 2008,16(4):18-20, 25. |
DONG S T, ZHANG J W. The establishment of maize modern industrial technology system, accelerate the development of maize production. Maize Science, 2008,16(4):18-20, 25. (in Chinese) | |
[2] | 中国农业年鉴编委会. 中国农业年鉴. 北京: 中国农业出版社, 2018. |
China Agricultural Yearbook Editorial Board. China Agriculture Yearbook. Beijing: China Agriculture Press, 2018. (in Chinese) | |
[3] | 王激清. 我国主要粮食作物施肥增产效应和养分利用效率的分析与评价[D]. 北京: 中国农业大学, 2007. |
WANG J Q. Analysis and evaluation of yield increase of fertilization and nutrient utilization efficiency for major cereal crops in China[D]. Beijing: China Agricultural University, 2007. (in Chinese) | |
[4] |
崔贝, 王纪华, 杨武德, 陈立平, 黄文江, 郭建华, 宋晓宇, 冯美臣. 冬小麦-夏玉米轮作区土壤养分时空变化特征. 中国农业科学, 2013,46(12):2471-2482.
doi: 10.3864/j.issn.0578-1752.2013.12.008 |
CUI B, WANG J H, YANG W D, CHEN L P, HUANG W J, GUO J H, SONG X Y, FENG M C. Analysis of temporal and spatial variation of soil nutrients in the winter wheat-summer maize rotation field. Scientia Agricultura Sinica, 2013,46(12):2471-2482. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.12.008 |
|
[5] | 张春华, 王宗明, 任春颖, 张柏, 宋开山, 刘殿伟. 松嫩平原玉米带土壤有机质和全氮的时空变异特征. 地理研究, 2011,30(2):256-268. |
ZHANG C H, WANG Z M, REN C Y, ZHANG B, SONG K S, LIU D W. Temporal and spatial variations of soil organic and total nitrogen in the Songnen Plain maize belt. Geographical Research, 2011,30(2):256-268. (in Chinese) | |
[6] |
徐新朋, 赵士诚, 张云贵, 何萍, 高强. 吉林省玉米种植区土壤养分空间变异特征研究. 植物营养与肥料学报, 2011,17(6):1342-1350.
doi: 10.11674/zwyf.2011.1044 |
XU X P, ZHAO S C, ZHANG Y G, HE P, GAO Q. Spatial variations of soil nutrients in maize production areas of Jilin province. Plant Nutrition and Fertilizer Science, 2011,17(6):1342-1350. (in Chinese)
doi: 10.11674/zwyf.2011.1044 |
|
[7] | 王璐, 翟义欣, 王菲. 地理信息系统(GIS)的发展及在农业领域的应用现状与展望. 农业环境科学学报, 2005,24(增刊):362-366. |
WANG L, ZHAI Y X, WANG F. Development of theory and application in agriculture of GIS. Journal of Agro-Environment Science, 2005,24(Suppl.):362-366. (in Chinese) | |
[8] |
ZHU H, CHEN X, ZHANG Y. Temporal and spatial variability of nitrogen in rice-wheat rotation in field scale. Environmental Earth Sciences, 2013,68(2):585-590.
doi: 10.1007/s12665-012-1762-4 |
[9] |
张玲娥, 双文元, 云安萍, 牛灵安, 胡克林. 30年间河北省曲周县土壤速效钾的时空变异特征及其影响因素. 中国农业科学, 2014,47(5):923-933.
doi: 10.3864/j.issn.0578-1752.2014.05.009 |
ZHANG L E, SHUANG W Y, YUN A P, NIU L A, HU K L. Spatio-temporal variability and the influencing factors of soil available potassium in 30 years in Quzhou County, Hebei Province. Scientia Agricultura Sinica, 2014,47(5):923-933. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.05.009 |
|
[10] |
ROGER A, LIBOHOVA Z, ROSSIER N, JOOST S, MALTAS A, FROSSARD E, SINAJ S. Spatial variability of soil phosphorus in the Fribourg canton, Switzerland. Geoderma, 2014, 217/218:26-36.
doi: 10.1016/j.geoderma.2013.11.001 |
[11] | 陈浮, 濮励杰, 曹慧, 彭补拙, 杨桂山, 周生路. 近20年太湖流域典型区土壤养分时空变化及驱动机理. 土壤学报, 2002,39(2):236-245. |
CHEN F, PU L J, CAO H, PENG B Z, YANG C S, ZHOU S L. Spatial and temporal changes of soil nutrients and their mechanism in typical area of Taihu Lake valley during the past two decades. Acta Pedologica Sinaica, 2002, 39(2):236-245. (in Chinese) | |
[12] | 王淑英, 路苹, 王建立, 杨柳, 杨凯, 于同泉. 不同研究尺度下土壤有机质和全氮的空间变异特征. 生态学报, 2007,28(10):4957-4964. |
WANG S Y, LU P, WANG J L, YANG L, YANG K, YU T Q. Spatial variability and distribution of soil organic matter and total nitrogen at different scales: A case study in Pinggu County, Beijing. Acta Ecological Sinica, 2007,28(10):4957-4964. (in Chinese) | |
[13] | 潘瑜春, 刘巧芹, 阎波杰, 陆洲, 周艳兵. 采样尺度对土壤养分空间变异分析的影响. 土壤通报, 2010,41(2):257-262. |
PAN Y C, LIU Q Q, YAN B J, LU Z, ZHOU Y B. Effects of sampling scale on soil nutrition spatial variability analysis. Chinese Journal of Soil Science, 2010, 41(2):257-262. (in Chinese) | |
[14] | 吴良泉, 武良, 崔振岭, 陈新平, 张福锁. 中国玉米区域氮磷钾肥推荐用量及肥料配方研究. 土壤学报, 2015,52(4):802-817. |
WU L Q, WU L, CUI Z L, CHEN X P, ZHANG F S. Basic NPK fertilizer recommendation and fertilizer formula for maize production regions in China. Acta Pedologica Sinaica, 2015, 52(4):802-817. (in Chinese) | |
[15] | 何迅, 巩细民. 土壤样品的采集与制备技术. 湖北农业科学, 2003(3):47-48. |
HE X, GONG X M. Techniques for the collection and preparation of soil samples. Hubei Agricultural Science, 2003(3):47-48. (in Chinese) | |
[16] | 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业科技出版社, 2007. |
BAO S D. Soil and Agrochemical Analysis. 3rd ed. Beijing: China Agriculture Press, 2007. (in Chinese) | |
[17] | 中国气象科学数据共享服务网. http://data.cma.cn. |
China Meteorological Data Sharing Service System. http://data.cma.cn. | |
[18] | 全国土壤普查办公室. 中国土壤普查技术. 北京: 农业出版社, 1992. |
National General Soil Survey Office. Technology of Nationwide General Soil Survey in China. Beijing: Agriculture Press, 1992. (in Chinese) | |
[19] | 张福锁, 陈新平, 陈清. 中国主要作物施肥指南. 北京: 中国农业大学出版社, 2009. |
ZHANG F S, CHEN X P, CHEN Q. China's Main Crop Fertilization Guidelines. Beijing: China Agricultural University Press, 2009. (in Chinese) | |
[20] | 刘璐, 曾馥平, 宋同清, 彭晚霞, 王克林, 覃文更, 谭卫宁. 喀斯特木论自然保护区旱季土壤水分的空间异质性. 应用生态学报, 2010,21(7):1667-1673. |
LIU L, ZENG F P, SONG T Q, PENG W X, WANG K L, QIN W G, TAN W N. Spatial heterogeneity of soil nutrients in Karst area's Mulun National Nature Reserve. Chinese Journal of Applied Ecology, 2010,21(7):1667-1673. (in Chinese) | |
[21] | 王绍强, 朱松丽, 周成虎. 中国土壤土层厚度的空间变异性特征. 地理研究, 2001,20(2):161-169. |
WANG S Q, ZHU S L, ZHOU C H. Characteristics of spatial variability of soil thickness in China. Geographical Research, 2001,20(2):161-169. (in Chinese) | |
[22] | 郭安廷, 崔锦霞, 许鑫, 马新明. 基于GIS与地统计的土壤养分空间变异研究. 中国农学通报, 2018,34(23):78-85. |
GUO A T, CUI J X, XU X, MA X M. Spatial distribution of soil nutrients based on GIS and geostatistics. Chinese Agricultural Science Bulletin, 2018,34(23):78-85. (in Chinese) | |
[23] | 张敏, 贺鹏飞, 陈伟强. 基于GIS和地统计学的土壤养分空间变异分析. 东北农业大学学报, 2010,41(3):53-58. |
ZHANG M, HE P F, CHEN W Q. Spatio-temporal variability analysis of soil nutrients based on GIS and geostatistics. Journal of Northeast Agricultural University, 2010,41(3):53-58. (in Chinese) | |
[24] | 杨忠华, 刘方, 赵泽英, 冯廷玺. 基于GIS和地统计学的农田土壤养分空间变异性研究. 贵州农业科学, 2009,37(9):120-124. |
YANG Z H, LIU F, ZHAO Z Y, FENG T X. Spatial variability of farmland soil nutrients based on GIS and geo-statistics. Guizhou Agricultural Sciences, 2009,37(9):120-124. (in Chinese) | |
[25] |
WEINDOR D C, ZHU Y. Spatial variability of soil properties at Capulin Volcano, New Mexico, USA: Implications for sampling strategy. Pedosphere, 2010,20(2):185-197.
doi: 10.1016/S1002-0160(10)60006-9 |
[26] | 安永龙, 杜子图, 黄勇. 基于地统计学和GIS技术的北京市大兴区礼贤镇土壤养分空间变异性研究. 现代地质, 2018,32(6):206-216. |
AN Y L, DU Z T, HUANG Y. Spatial variation analysis of soil nutrients in Lixian town of Daxing district in Beijing based on geostatistics and GIS. Geoscience, 2018,32(6):206-216. (in Chinese) | |
[27] | 石媛媛, 邓明军, 林北森, 高华军, 刘春萍, 姚文艺. 基于GIS和地统计学的百色植烟土壤养分空间分析. 南方农业学报, 2014,45(8):1403-1409. |
SHI Y Y, DENG M J, LIN B S, GAO H J, LIU C P, YAO W Y. Spatial analysis of tobacco soil nutrients in Baise based on GIS and geostatistics. Journal of Southern Agriculture, 2014, 45(8):1403-1409. (in Chinese) | |
[28] | 吕贻忠. 土壤学. 北京: 中国农业出版社, 2006. |
LÜ Y Z. Soil Science. Beijing: China Agricultural Press, 2006. (in Chinese) | |
[29] |
SUN B, ZHOU S L, ZHAO Q G. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 2003,115(1/2):85-99.
doi: 10.1016/S0016-7061(03)00078-8 |
[30] | 杨文治, 邵明安. 黄土高原土壤水分研究. 北京: 科学出版社, 2000. |
YANG W Z, SHAO M A. Research of Soil Water on Loess Plateau. Beijing: Science Press, 2000. (in Chinese) | |
[31] |
康日峰, 任意, 吴会军, 张淑香. 26年来东北黑土区土壤养分演变特征. 中国农业科学, 2016,49(11):2113-2125.
doi: 10.3864/j.issn.0578-1752.2016.11.008 |
KANG R F, REN Y, WU H J, ZHANG S X. Changes in the nutrients and fertility of black soil over 26 years in northeast China. Scientia Agricultura Sinica, 2016, 49(11):2113-2125. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.11.008 |
|
[32] | 杨帆, 徐洋, 崔勇, 孟远夺, 董燕, 李荣, 马义兵. 近30年中国农田耕层土壤有机质含量变化. 土壤学报, 2017,54(5):1047-1056. |
YANG F, XU Y, CUI Y, MENG Y D, DONG Y, LI R, MA Y B. Variation of soil organic matter content in croplands of China over the last three decades. Acta Pedologica Sinica, 2017,54(5):1047-1056. (in Chinese) | |
[33] | 胡克林, 余艳, 张凤荣, 王茹. 北京郊区土壤有机质含量的时空变异及其影响因素. 中国农业科学, 2006,39(4):764-771. |
HU K L, YU Y, ZHANG F R, WANG R. The spatial-temporal variability of soil organic matter and its influencing factors in suburban area of Beijing. Scientia Agricultura Sinica, 2006,39(4):764-771. (in Chinese) | |
[34] | KARHU K, FRITZE H, TUOMI M, VANHALA P, SPETZ P, KITUNEN V, LIISKI J. Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biology & Biochemistry, 2010, 42(1):72-82. |
[35] | 邸欣月, 安显金, 董慧, 汤海明, 肖保华. 贵州喀斯特区域土壤有机质的分布与演化特征. 地球与环境, 2015,43(6):697-708. |
DI X Y, AN X J, DONG H, TANG H M, XIAO B H. The distribution and evolution of soil organic matter in the Karst region, Guizhou province, southwestern China. Earth and Environment, 2015,43(6):697-708. (in Chinese) | |
[36] | 韩天富, 马常宝, 黄晶, 柳开楼, 薛彦东, 李冬初, 刘立生, 张璐, 刘淑军, 张会民. 基于Meta 分析中国水稻产量对施肥的响应特征. 中国农业科学, 2019,52(11):1918-1929. |
HAN T F, MA C B, HUANG J, LIU K L, XUE Y D, LI D C, LIU L S, ZHANG L, LIU S J, ZHANG H M. Variation in rice yield response to fertilization in China: Meta-analysis. Scientia Agricultura Sinica, 2019,52(11):1918-1929. (in Chinese) | |
[37] | LIU Z P, SHAO M A, WANG Y Q. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma, 2013, 197/198:67-78. |
[38] |
CHEN X P, CUI Z L, VITOUSEK P M, CASSMAN K G, MATSON P A, BAI J S, MENG Q F, HOU P, Yue S C, ROMHELD V, ZHANG F S. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the USA, 2011,108(16):6399-6404.
doi: 10.1073/pnas.1101419108 pmid: 21444818 |
[39] | 张芳芳, 张丽萍, 王文艳, 王小云. 水蚀风蚀交错区土壤养分特征与土壤质地及水分关系. 水土保持学报, 2012,26(2):99-104. |
ZHANG F F, ZHANG L P, WANG W Y, WANG X Y. Relationship between characteristic of soil nutrients and soil texture and moisture in wind-water erosion crisscross region. Journal of Soil and Water Conservation, 2012,26(2):99-104. (in Chinese) | |
[40] | 张世熔, 黄元仿, 李保国, 张凤荣, 高峻. 黄淮海冲积平原区土壤速效磷、钾的时空变异特征. 植物营养与肥料学报, 2003,9(1):3-8. |
ZHANG S R, HUANG Y F, LI B G, ZHANG F R, GAO J. Temporal-spatial variability of soil available phosphorus and potassium in the alluvial region of the Huang-Huai-Hai Plain. Plant Nutrition and Fertilizer Science, 2003,9(1):3-8. (in Chinese) | |
[41] | 王涛, 杨元和, 马文红. 中国土壤磷库的大小、分布及其影响因素. 北京大学学报: 自然科学版, 2008 44(6):945-952. |
WANG T, YANG Y H, MA H W. Storage, patterns and environmental controls of soil phosphorus in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008,44(6):945-952. (in Chinese) | |
[42] |
ZHANG W, LIU D Y, LIU Y M, CUI Z L, CHEN X P, ZOU C Q. Zinc uptake and accumulation in winter wheat relative to changes in root morphology and mycorrhizal colonization following varying phosphorus application on calcareous soil. Field Crops Research, 2016, 197:74-82.
doi: 10.1016/j.fcr.2016.08.010 |
[43] | 赵宇光, 梁成华, 杜立宇, 陈新之. 长期定位施肥设施土壤微团聚体磷素吸附解吸特征性探讨. 北方园艺, 2009(5):1-4. |
ZHAO Y G, LIANG C H, DU L Y, CHEN X Z. Adsorption-desorption of phosphorus on micro-aggregates of greenhouse soil of long-term fertilization. Northern Horticulture, 2009(5):1-4. (in Chinese) | |
[44] | LI H, HUANG G, MENG Q, MA L, YUAN L, WANG F, ZHANG W, CUI Z, SHEN J, CHEN X, JIANG R, ZHANG F. Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant and Soil, 2011, 349(1/2):157-167. |
[45] | 孙维侠, 黄标, 杨荣清, 朱静, 邹忠, 丁峰, 苏建平, 金洋, 毕葵森. 长江三角洲典型地区农田土壤速效钾时空演变特征及其驱动力. 南京大学学报(自然科学版), 2005,41(6):648-657. |
SUN W X, HUANG B, YANG R Q, ZHU J, ZOU Z, DING F, SU J P, JIN Y, BI K S. Spatio-temporal variability of exchangeable potassium in agricultural soils and its driving factors in a typical area of Yangtze River delta region. Journal of Nanjing University (Natural Sciences), 2005,41(6):648-657. (in Chinese) |
[1] | 刘针杉, 涂红霞, 周荆婷, 马艳, 柴久凤, 王旨意, 杨鹏飞, 杨小芹, Kumail Abbas, 王浩, 王燕, 王小蓉. 中国樱桃正反交F1代果实主要性状的遗传分析[J]. 中国农业科学, 2023, 56(2): 345-356. |
[2] | 张洁,姜长岳,王跃进. 中国野生毛葡萄转录因子VqWRKY6与VqbZIP1互作调控抗白粉病功能分析[J]. 中国农业科学, 2022, 55(23): 4626-4639. |
[3] | 朱长伟,孟威威,石柯,牛润芝,姜桂英,申凤敏,刘芳,刘世亮. 不同轮耕模式下小麦各生育时期土壤养分及酶活性变化特征[J]. 中国农业科学, 2022, 55(21): 4237-4251. |
[4] | 吴秋琳,姜玉英,刘媛,刘杰,马景,胡高,杨明进,吴孔明. 草地贪夜蛾在中国西北地区的迁飞路径[J]. 中国农业科学, 2022, 55(10): 1949-1960. |
[5] | 郭迎新,陈永亮,苗琪,范志勇,孙军伟,崔振岭,李军营. 洱海流域植烟土壤养分时空变异特征及肥力评价[J]. 中国农业科学, 2022, 55(10): 1987-1999. |
[6] | 靳玉婷,刘运峰,胡宏祥,穆静,高梦瑶,李先藩,薛中俊,龚静静. 持续性秸秆还田配施化肥对油菜-水稻轮作周年氮磷径流损失的影响[J]. 中国农业科学, 2021, 54(9): 1937-1951. |
[7] | 赵卫松,郭庆港,苏振贺,王培培,董丽红,胡卿,鹿秀云,张晓云,李社增,马平. 马铃薯健株与黄萎病株根际土壤真菌群落结构及其对碳源利用特征[J]. 中国农业科学, 2021, 54(2): 296-309. |
[8] | 丁茜,赵凯茜,王跃进. 中国野生毛葡萄芪合酶基因表达及对葡萄抗白粉病的影响[J]. 中国农业科学, 2021, 54(2): 310-323. |
[9] | 张丽,汤亚飞,李正刚,于琳,蓝国兵,佘小漫,何自福. 侵染广东省葫芦科作物的中国南瓜曲叶病毒的分子特征[J]. 中国农业科学, 2021, 54(19): 4097-4109. |
[10] | 宋美洁,欧爱群,薛晓锋,吴黎明,寿旗扬,王凯. 蜂胶提取物对脂多糖诱导小鼠急性乳腺炎及乳腺屏障功能的保护作用[J]. 中国农业科学, 2021, 54(12): 2675-2688. |
[11] | 赵鹏,刘明,靳容,陈晓光,张爱君,唐忠厚,魏猛. 长期施用有机肥对潮土区甘薯碳氮积累与分配的影响[J]. 中国农业科学, 2021, 54(10): 2142-2153. |
[12] | 李方杰,任建强,吴尚蓉,陈仲新,张宁丹. 河南省冬小麦种植频率时空变化及影响因素分析[J]. 中国农业科学, 2020, 53(9): 1773-1794. |
[13] | 任涛,郭丽璇,张丽梅,杨旭坤,廖世鹏,张洋洋,李小坤,丛日环,鲁剑巍. 我国冬油菜典型种植区域土壤养分现状分析[J]. 中国农业科学, 2020, 53(8): 1606-1616. |
[14] | 张维理,张认连,冀宏杰,KOLBE H,陈印军. 中德农业源污染管控制度比较研究[J]. 中国农业科学, 2020, 53(5): 965-976. |
[15] | 颜鹏,韩文炎,李鑫,张丽平,张兰. 中国茶园土壤酸化现状与分析[J]. 中国农业科学, 2020, 53(4): 795-801. |
|