[1] 王冰, 宋娜, 孙燕飞, 冯浩, 王晓杰, 康振生. MircoRNA156家族在小麦非生物胁迫中的表达分析. 植物病理学报, 2013, 43(2): 201-204.
WANG B, SONG N, SUN Y F, FENG H, WANG X J, KANG Z S. Expression analysis of wheat mircoRNA156 family in response to abiotic stress. Acta Phytopathologica Sinica, 2013, 43(2): 201-204. (in Chinese)
[2] 冯静弦, 汪启明, 胡琪, 饶力群. 拟南芥中热胁迫相关microRNA的差异表达. 湖南农业科学, 2012(3): 10-13.
FENG J X, WANG Q M, HU Q, RAO L Q. Differential expression of heat stress related microRNA in Arabidopsis thaliana. Hunan Agricultural Science, 2012(3): 10-13. (in Chinese)
[3] 俞正, 庄然. 病毒感染miRNA的免疫调控机制研究进展. 细胞与分子免疫学杂志, 2016, 32(2): 261-264.
YU Z, ZHUANG R. Advances in immunoregulation mechanism of virus infection associated miRNA. Chinese Journal of Cellular and Molecular Immunology, 2016, 32(2): 261-264. (in Chinese)
[4] 王维, 张玉娟, 陈洁, 刘聚波, 夏民旋, 沈法富. 植物逆境胁迫相关miRNA研究进展. 生物技术通报, 2015, 31(1): 1-10.
WANG W, ZHANG Y J, CHEN J, LIU J B, XIA M X, SHEN F F. Research progress of microRNAs in plant stresses responses. Biotechnology Bulletin, 2015, 31(1): 1-10. (in Chinese)
[5] 冉莉萍, 孔月琴, 方婷婷, 王幼平. 逆境胁迫下植物表观遗传机制的研究进展. 生物技术通报, 2014(8): 8-15.
RAN L P, KONG Y Q, FANG T T, WANG Y P. Research progress of stress-induced epigenetic regulation mechanism in plant. Biotechnology Bulletin, 2014(8): 8-15. (in Chinese)
[6] ZHOU Q L, ZHANG Y J, HUANG Y D, LI Y M, HE S L, YANG H K, LIU L S, WANG M. Effects of SPVD on sweet potato yield formation. Agricultural Science & Technology, 2014, 15(9): 1446-1449.
[7] 包改丽, 左瑞娟, 饶维力, LI Ru-Hui, 李凡. 云南甘薯病毒的检测及主要病毒的多样性分析. 微生物学通报, 2013, 40(2): 236-248.
[8] 刘辛. 番茄microRNA及其靶基因对几种病毒侵染的反应[D]. 杭州: 浙江理工大学, 2008.
LIU X. Response of tomato microRNA and their target mRNAs to virus infection[D]. Hangzhou: Zhejiang Sci-Tech University, 2008. (in Chinese)
[9] 陈莎. 深度测序鉴定玉米病毒及感病玉米组织中小RNA分析[D]. 杭州: 浙江大学, 2015.
CHEN S. Identification of plant viruses from maize by deep sequencing and analysis of small RNA in virus infected maize[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
[10] 王园龙, 曹林, 邓敏捷, 马一平, 赵振利, 牛苏燕, 王晓丹, 范国强. 利用高通量测序分析白花泡桐盐胁迫相关microRNAs. 河南农业大学学报, 2015, 49(4): 461-467.
WANG Y L, CAO L, DENG M J, MA Y P, ZHAO Z L, NIU S Y, WANG X D, FAN G Q. Analysis of salt stress-responsive microRNA in Paulownia fortunei by high-throughout sequencing. Journal of Henan Agricultural University, 2015, 49(4): 461-467. (in Chinese)
[11] 陈洁. 重金属铅胁迫下玉米苗期根系miRNA的鉴定及相关miRNA的表达分析[D]. 雅安: 四川农业大学, 2010.
CHEN J. Identification and expression analysis of miRNAs in immature maize root under the stress of heavy metal Pb[D]. Yaan: Sichuan Agricultural University, 2010. (in Chinese)
[12] 马骢毓. 马铃薯抗旱相关microRNA的鉴定及分析[D]. 兰州: 甘肃农业大学, 2012.
MA C Y. Identification and analysis of microRNA related to drought resistance of potato[D]. Lanzhou: Gansu Agricultural University, 2012. (in Chinese)
[13] 詹琳琳. 烟草抗马铃薯Y病毒miRNA的筛选及相关miRNA的功能分析[D]. 杭州: 浙江农林大学, 2015.
ZHAN L L. Screening for miRNA of tobacco resistance to potato virus Y and function analysis of relevant miRNA[D]. Hangzhou: Zhejiang A & F University, 2015. (in Chinese)
[14] 乔奇, 张振臣, 张德胜, 秦艳红, 田雨婷, 王永江. 中国甘薯病毒种类的血清学和分子检测. 植物病理学报, 2012, 42(1): 10-16.
QIAO Q, ZHANG Z C, ZHANG D S, QIN Y H, TIAN Y T, WANG Y J. Serological and molecular detection of viruses infecting sweet potato in China. Acta Phytopathologica Sinica, 2012, 42(1): 10-16. (in Chinese)
[15] Meyers B C, Axtell M J, Bartel B, Bartel D P, Baulcombe D, Bowman J L, Cao X, Carrington J C, Chen X, Green P J, Griffiths-Jones S. Criteria for annotation of plant MicroRNAs. The Plant Cell, 2008, 20(12): 3186-3190.,Jacobsen SE,Mallory A C,Martienssen R A,Poethig R S,Qi Y,Vaucheret H,Voinnet O,Watanabe Y,Weigel D,Zhu J K
[16] Lavorgna G, Guffanti A, Borsani G, Ballabio A, Boncinelli E. TargetFinder: searching annotated sequence databases for target genes of transcription factors. Bioinformatics, 1999, 15(2): 172-173.
[17] 黄利利, Binhdan P, 何芳练, 刘奕君, 刘义明, 陈保善, 廖咏梅. 广西甘薯病毒病的病原病毒种类检测. 基因组学与应用生物学, 2016, 35(5): 1213-1218.
HUANG L L, Binhdan P, HE F L, LIU Y J, LIU Y M, CHEN B S, LIAO Y M. The pathogenic virus species detection of sweet potato viral diseases in Guangxi. Genomics and Applied Biology, 2016, 35(5): 1213-1218. (in Chinese)
[18] 姜珊珊, 谢礼, 吴斌, 辛相启, 陈剑平, 赵玖华. 山东甘薯主要病毒的鉴定及多样性分析. 植物保护学报, 2017, 44(1): 93-102.
JIANG S S, XIE L, WU B, XIN X Q, CHEn J P, ZHAO J H. Identification and genetic diversity analysis on sweet potato viruses in Shandong Province. Journal of Plant Protection, 2017, 44(1): 93-102. (in Chinese)
[19] 彭小琴, 王浩然, 张俊, 张玮华, 郭灵芳, 方守国, 章松柏. 湖北甘薯病毒病的检测与鉴定. 中国植保导刊, 2017, 37(8): 20-23.
PENG X Q, WANG H R, ZHANG J, ZHANG W H, GUO L F, FANG S G, ZHANG S B. Detection and identification of sweet potato virus diseases in Hubei. China Plant Protection, 2017, 37(8): 20-23. (in Chinese)
[20] 张爱红, 苗洪芹, 朱宝成, 路银贵, 陈丹, 邸垫平. 水稻黑条矮缩病毒在不同抗性玉米自交系叶片内的积累研究. 河北农业大学学报, 2007, 30(2): 79-82.
ZHANG A H, MIAO H Q, ZHU B C, LU Y G, CHEN D, DI D P. Studies on the concentration of RBSDV in corn inbred lines with different resistance to the disease. Journal of Agricultural University of Hebei, 2007, 30(2): 79-82. (in Chinese)
[21] 刘起丽. 共生丛植菌根减轻番茄黄化卷叶撒丁岛病毒症状和降低病毒浓度. 农业生物技术学报, 2014, 22(2): 149.
LIU Q L. The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in TYLCSV. Journal of agricultural biotechnology, 2014, 22(2): 149. (in Chinese)
[22] 季志强, 杨青林, 桑利民, 盖颜欣. 脱毒马铃薯的增产机理和增产原因分析. 种子世界, 2014(5): 23.
JI Z Q, YANG Q L, SANG L M, GAI Y X. Analysis of the mechanism and cause of increased production of detoxification potato plant. Seed World, 2014(5): 23. (in Chinese)
[23] 牟慧芳, 齐雯雯, 刘艳玲, 李毅, 吴莹. microRNA参与调控植物抵御病原微生物的研究进展. 现代农业科技, 2016(23): 144-147.
MU H F, QI W W, LIU Y L, LI Y, WU Y. Research advances of microRNAs in plant resistance to pathogens. Modern Agricultural Sciences and Technology, 2016(23): 144-147. (in Chinese)
[24] 王晟. 水稻小RNA的基因组分布和分子进化研究[D]. 杭州: 浙江大学, 2008.
WANG S. Genome-wide profiling and evolution of small RNAs in rice[D].Hangzhou: Zhejiang University, 2008. (in Chinese)
[25] Chuck G, Cigan A M, Saeteurn K, Hake S. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature genetics, 2007, 39(4): 544-549.
[26] 雷凯健, 刘浩. 植物调控枢纽miR156及其靶基因SPL家族研究进展. 生命的化学, 2016, 36(1): 13-20.
LEI K J, LIU H. Research advances in plant regulatory hub miRNA156 and target SPL family. Chemistry of Life, 2016, 36(1): 13-20. (in Chinese)
[27] Chen X, Chen Z, Zhao H L, Zhao Y, Cheng B J, Xiang Y. Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments. PLoS ONE, 2014, 9(2): e87156.
[28] González-Grandío E, Pajoro A, Franco-Zorrilla J M, Tarancón C, Immink R G, Cubas P. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2): E245-E254.
[29] 王宏, 李刚波, 张大勇, 蔺经, 盛宝龙, 韩金龙, 常有宏. 植物HD-Zip转录因子的生物学功能. 遗传, 2013, 35(10): 1179-1188.
WANG H, LI G B, ZHANG D Y, LIN J, SHENG B L, HAN J L, CHANG Y H. Biological functions of HD-Zip transcription factors. Hereditas, 2013, 35(10): 1179-1188. (in Chinese)
[30] 董云, 王毅, 靳丰蔚, 孙万仓, 刘自刚, 方彦, 徐妙云, 王磊. 油菜Bna-miR169d基因的分离与过表达初步分析. 西北农业学报, 2016, 25(12): 1809-1815.
DONG Y, WANG Y, JING F W, SUN W C, LIU Z G, FANG Y, XU M Y, WANG L. Isolation and preliminary overexpression of Bna-miR169d gene in oilseed rapes Sinica, 2016, 25(12): 1809-1815. (in Chinese). Acta Agriculturae Boreali-occidentali
[31] Hu T, Ye J, Tao P, Li H, Zhang J, Zhang Y, Ye Z. The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the d-mannose/l- galactose pathway. The Plant Journal, 2016, 85(1): 16-29.
[32] 许振华, 谢传晓. 植物microRNA与逆境响应研究进展. 遗传, 2010, 32(10): 1018-1030.
XU Z H, XIE C X. Advances in plant microRNA and stresses response. Hereditas, 2010, 32(10): 1018-1030. (in Chinese)
[33] 王炳南. 小麦SPL基因的比较分析和功能研究[D]. 北京: 中国农业科学院, 2015.
WANG B N. Comparative analysis and functional study of SQUAMOSA promoter binding protein-like (SPL) genes in wheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[34] 伍翀, 杨兆春, 秦双双, 袁媛, 黄璐琦, 陈平. 植物MYB转录因子研究进展//中华中医药学会中药鉴定学术会议暨中药材鉴定方法和技术研讨会, 2010.
WU C, YANG Z C, QIN S S, YUAN Y, HUANG L Q, CHEN P. Advances in plant MYB transcription factors//China Chinese medicine institute academic conference on Chinese medicine identification, the seminar of Chinese medicine identification method and technic, 2010. (in Chinese)
[35] Ren L, Sun J, Chen S, Gao J, Dong B, Liu Y, Xia X, Wang Y, Liao Y, Teng N, Fang W, Guan Z, Chen F, Jiang J. A transcriptomic analysis of Chrysanthemum nankingense provides insights into the basis of low temperature tolerance. BMC genomics, 2014, 15(1): 844.
[36] 郭彤. 低温胁迫下菊花叶片转录组比较分析[D]. 郑州: 河南农业大学, 2016.
GUO T. Comparative transcriptome analysis of the regulation of responding to low temperature in Dendranthema morifolium by RNA-seq[D]. Zhengzhou: Henan Agricultural University, 2016. (in Chinese)
[37] 刘维. 番茄钙调蛋白和类钙调蛋白的抗病调控功能分析[D]. 杭州: 浙江大学, 2015.
LIU W. Functional analyses of tomato calmodulin and calmodulin-like genes in disease resistance[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
[38] Radwan O, Gandhi S, Heesacker A, Whitaker B, Taylor C, Plocik A, Kesseli R, Kozik A, Michelmore R W, Knapp S J. Genetic diversity and genomic distribution of homologs encoding NBS-LRR disease resistance proteins in sunflower. Molecular genetics and genomics, 2008, 280(2): 111-125. |