中国农业科学 ›› 2020, Vol. 53 ›› Issue (8): 1677-1687.doi: 10.3864/j.issn.0578-1752.2020.08.016
陈露露,王会,王吉坤,王嘉博,柴志欣,陈智华(),钟金城(
)
收稿日期:
2019-04-30
接受日期:
2020-02-19
出版日期:
2020-04-16
发布日期:
2020-04-29
通讯作者:
陈智华,钟金城
作者简介:
陈露露,E-mail: 1556370692@qq.com。
基金资助:
CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua(),ZHONG JinCheng(
)
Received:
2019-04-30
Accepted:
2020-02-19
Online:
2020-04-16
Published:
2020-04-29
Contact:
ZhiHua CHEN,JinCheng ZHONG
摘要:
【目的】miRNA作为一类非编码RNA,广泛参与机体多种生命活动,研究旨在挖掘miRNA在藏黄牛和宣汉黄牛心脏组织中的差异miRNA,为进一步研究藏黄牛低氧适应的分子机制提供基础数据。【方法】随机选取健康的藏黄牛和宣汉黄牛各3头,迅速采集其心脏组织,使用Trizol法提取RNA,琼脂糖凝胶电泳切胶选取18—30nt的片段,连接3'端和5'端,反转录后进行扩增,凝胶电泳切胶纯化后建立藏黄牛和黄牛各3个文库,利用Illumina HiSeq4000测序平台进行高通量测序;将测序得到的序列进行过滤,比对GenBank和Rfam数据库,筛选出藏黄牛和宣汉黄牛的差异miRNA,进行功能注释及信号通路富集分析;随机选择8个miRNAs,利用实时荧光定量PCR检测其在心脏组织的表达量,以验证测序数据的准确性。【结果】藏黄牛和宣汉黄牛心脏组织的高质量读值的序列分别为17 463 446条和13 662 812条,干净读值为16 552 296条和12 055 304条,且在藏黄牛和宣汉黄牛中高质量核酸序列长度富集最多的均是21nt,分别为37.5%和32.1%;且共筛选出219个差异miRNAs,其中48个显著上调,171个显著下调;GO功能注释得到差异miRNA靶基因分子功能中显著富集的条目有22条,如,GO:0005488(结合)、GO:0005515(蛋白质结合)和GO:0043167(离子结合);细胞组分中显著富集的条目有20条,如,GO:0005623(细胞)、GO:0044464(细胞组分)和GO:0005622(细胞内);生物过程中显著富集的条目有13条,如,GO:0035556(细胞内信号转导)、GO:0032774(RNA生物合成过程)和GO:0006351(转录,DNA模板化),KEGG信号通路分析得到差异表达miRNAs靶基因显著富集到胰岛素信号通路(139个靶基因)、mTOR信号通路(38个靶基因)和HIF-1 信号通路(92个靶基因)等232个信号通路中,其中有12个靶基因共同作用于这3个信号通路,说明miRNAs可能通过这3个信号通路,共同参与藏黄牛低氧适应性的调控;随机选取8个miRNAs进行荧光定量验证,其表达趋势与测序结果表达趋势基本一致,表明高通量测序数据可信度较高。【结论】得到了miRNA在藏黄牛与宣汉黄牛心脏组织中的表达谱,为揭示藏黄牛低氧适应性的调控机制研究奠定了基础。
陈露露,王会,王吉坤,王嘉博,柴志欣,陈智华,钟金城. 藏黄牛与宣汉黄牛心脏miRNA表达谱比较[J]. 中国农业科学, 2020, 53(8): 1677-1687.
CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle[J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
表1
荧光定量引物"
miRNAs miRNAs | 引物序列(5'-3') Primer sequence(5'-3') |
---|---|
bta-miR-99a-5p | RT primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACAAGATC F: CTGGAGAACCCGTAGATCCGAT |
bta-miR-100 | RT primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCACAAGTT F: CTGGAGAACCCGTAGATCCGAA |
miR-99-x | RT primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCACAAGA F: CTGGAG AACCCGTAGATCCGAT |
bta-miR-1468 | RT primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCAGCAAA F: CTGGAGGTCGTATCCAGTGCAG |
bta-miR-1 | RT primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACATACATCT F: CTGGAGTCGGATCCGTCTGAGC |
bta-miR-148a | RT primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACAAAGTT F: CTGGAGTCAGTGCACTACAGAA |
miR-101-y | RT primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGTCAGTT F: CTGGAGTACAGTACTGTGATAA |
bta-miR-499 | RT primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAACATCA F: CTGGAGTTAAGACTTGCAGTGA |
miRNA统一反向引物 Unified reverse primer | GTGCAGGGTCCGAGGT |
表2
数据过滤及去端头情况统计"
读段类型 Type of reads | 藏黄牛1 数量Count | 藏黄牛2 数量Count | 藏黄牛3 数量Count | 平均值 Average value | 宣汉黄牛1 数量Count | 宣汉黄牛2 数量Count | 宣汉黄牛3 数量Count | 平均值 Average value |
---|---|---|---|---|---|---|---|---|
总读值 Total reads | 17274872 (100%) | 14655372 (100%) | 21634340 (100%) | 17854861 | 14186785 (100%) | 13820881 (100%) | 13651263 (100%) | 13886310 |
高质量读值 Reads with high quality | 16864234 (97.6229%) | 14331976 (97.7933%) | 21194128 (97.9652%) | 17463446 | 13970084 (98.4725%) | 13591498 (98.3403%) | 13426853 (98.3561%) | 13662812 |
3' 端缺失 Reads with null 3'adapter | 41744 (0.2475%) | 31922 (0.2227%) | 31922 (0.4363%) | 35196 | 44975 (0.3219%) | 29374 (0.2161%) | 33735 (0.2513%) | 36028 |
插入缺失读值 Reads with insert | 101492 (0.6018%) | 74047 (0.5167%) | 51722 (0.2440%) | 75754 | 108440 (0.7762%) | 72639 (0.5344%) | 93029 (0.6929%) | 91369 |
5'端污染的读值 5'adapter contaminants | 7946 (0.0471%) | 15266 (0.1065%) | 7948 (0.0375%) | 10387 | 18678 (0.1337%) | 20305 (0.1494%) | 39930 (0.2974%) | 26304 |
小于18nt的读值 Reads shorter than 18nt | 437113 (2.5920%) | 598024 (4.1727%) | 480882 (2.2689%) | 505340 | 811209 (5.8068%) | 998246 (7.3446%) | 1414065 (10.5316%) | 1074507 |
含有poly(A)的序列 Reads with polyA | 139 (0.0008%) | 133 (0.0009%) | 316 (0.0015%) | 196 | 37 (0.0003%) | 35 (0.0003%) | 59 (0.0004%) | 44 |
低频数读值(< 2) Reads with Low frequency | 228502 (1.3550%) | 270838 (1.8897%) | 292937 (1.3822%) | 264092 | 369657 (2.6461%) | 300701 (2.2124%) | 467408 (3.4811%) | 379255 |
干净读值 Clean reads | 16047298 (95.1558%) | 13341746 (93.0908%) | 20267845 (95.6295%) | 16552296 | 12617088 (90.3150%) | 12170198 (89.5427%) | 11378627 (84.7453%) | 12055304 |
表3
差异表达中表达量较高的10个 miRNAs"
基因名 Gene name | log2(fc) | P值 P value | 序列 Sequence |
---|---|---|---|
miR-2285-y | -2.185471095 | 0.010019532 | TCCAAGTGAACTTTTTGGCT |
miR-2284-y | -2.234579424 | 0.009299134 | TCCAAGTGAACTTTTTGGCT |
bta-miR-10a | -3.418663256 | 1.30E-06 | TACCCTGTAGATCCGAATTTGTG |
bta-miR-208b | -2.116094716 | 0.00109356 | ATAAGACGAACAAAAGGTTTGT |
bta-miR-146b | -3.180709957 | 9.28E-07 | TGAGAACTGAATTCCATAGGCTGT |
bta-miR-141 | -8.183090025 | 6.55E-27 | TAACACTGTCTGGTAAAGATGG |
bta-miR-200a | -6.442558686 | 1.66E-10 | TAACACTGTCTGGTAACGATGTT |
bta-miR-2478 | -2.342776751 | 0.000175165 | GTATCCCACTTCTGACACCA |
bta-miR-19b | -2.540817607 | 5.05E-05 | TGTGCAAATCCATGCAAAACTGA |
bta-miR-200c | -7.794012294 | 7.53E-22 | TAATACTGCCGGGTAATGATGGA |
表5
3个信号通路涉及的靶基因"
富集通路 Enrichment pathway | 靶基因 Target gene |
---|---|
胰岛素信号通路 Insulin signaling pathway | FASN, PYG, GYS, HK, PHKG, PIK3C, G6PC, PCK, ACACB, BAD, CALM, PIK3R, HRAS, RP-S6e, GSK3B, SOS, EIF4E, FBP, PKA, GRB2, BRAF, RAF1, MAP2K1, MAP2K2, MAPK13, MKNK, ELK1, CRK, JNK, AKT,INSR, RPS6KB, SOCS1, SOCS2, SOCS3, SOCS4, CBL, PRKAR, PTPRF, PTPN1, PRKCI, SORBS1, PPP1C, PDPK1, RAPGEF1, SHC1, IRS2, LIPE, PPP1R3, PHKA-B, SLC2A4, FLOT, APS, RHOQ, EXOC7, TRIP10, SREBP1, PRKAA, PRKAB, PRKAG, FOXO1, PPARGC1A, MTOR, RAPTOR, EIF4EBP1, TSC1, TSC2, RHEB, IKBKB, KRAS, NRAS, ARAF, ACACA, PKLR, GCK, PDE3B, SHIP2, IRS1, IRS3, IRS4, SHC2, SHC3, SHC4, PPP1R3F, PRKCZ, HRAS, GSK3B, CXCR4, PPP3C, RASA1, MAPK1_3, RAC1, PAK1, PAK2, RHOA, ROCK1, GNAI, MET, EPHA1, EPHA2, EPHA4, EPHA5, EPHA6, EPHA7, EPHA8, EPHB1, EPHB2, EPHB3, EPHB4, EPHB6, EFNA, EFNB, FYN, ITGB1, PTK2, PAK3, PAK4, PAK6, PAK7, LIMK1, LIMK2, CFL, PPP3R, SEMA4, SEMA7, L1CAM, PLXNC, ABL1, NRP1, ROBO1, ROBO2, DCC, PLXNA, PLXNB |
mTOR信号通路 mTOR signaling pathway | PIK3C, PTEN, PIK3R, PRKCA, RP-S6e, TNF, EIF4B, EIF4E, BRAF, MAPK1_3, RPS6KA, AKT, RPS6KB, VEGFA, IGF1, PDPK1, PRKAA, MTOR, RAPTOR, EIF4EBP1, TSC1, TSC2, RHEB, IKBKB, STK11, MLST8, RICTOR, HIF1A, ULK1_2_3, DDIT4, STRADA, CAB39, IRS1, AKT1S1, RRAGA_B, RRAGC_D, PRKCB, PRKCG |
HIF-1信号通路 HIF-1 signaling pathway | GAPDH, PDHA, PDHB, HK, PIK3C, PFKFB3, PLCG1, ENO, BCL2, NFKB1, PIK3R, PRKCA, RP-S6e, TNFRSF3, EIF4E, RBX1, CUL2, VHL, SERPINE1, EGF, EGFR, MAP2K1, MAPK1_3, MKNK, AKT, EP300, CAMK2, INSR, IFNG, RPS6KB, STAT3, RELA, IL6R, ERBB2, IGF1R, FLT1, TEK, IFNGR1, IFNGR2, IL6, EPO, VEGFA, IGF1, ANGPT1, ANGPT2, ANGPT4, PLCG2, TFRC, CDKN1B, CDKN1A, MTOR, EIF4EBP1, SLC2A1, NOX, HIF1A, EGLN, TLR4, PDK1, NOS2, NOS3, TF, EDN1, TIMP1, PRKCB, PRKCG |
[1] | TEKIN D, DURSUN A D, XI L . Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacologica Sinica, 2010,31(9):1085-1094. |
[2] | SEMENZA G L . Hypoxia-inducible factors in physiology and medicine. Cell, 2012,148(3):399-408. |
[3] | BARTEL D P . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297. |
[4] | HE M, LU Y, XU S, MAO L, ZHANG L, DUAN W, LIU C, PI H, ZHANG Y, ZHONG M, YU Z, ZHOU Z . MiRNA-210 modulates a nickel-induced cellular energy metabolism shift by repressing the iron-sulfur cluster assembly proteins ISCU1/2 in Neuro-2a cells. Cell Death Disease, 2014, 5(2):e1090. |
[5] | CONTI A, ROMEO S G, CAMA A, LATORRE D, BARRESI V, PEZZINO G, TOMASELLO C, CARDALI S, ANGILERI F F, POLITO F, FERLAZZO G, DIGIORGIO R, GERMANO A, AGUENNOUZ M . MiRNA expression profiling in human gliomas: upregulated miR-363 increases cell survival and proliferation. Tumour Biology 2016, 37(10):14035-14048. |
[6] | PANDEY R K, SUNDAR S, PRAJAPAATI V K . Differential expression of miRNA regulates T Cell differentiation and plasticity during visceral leishmaniasis infection. Frontiers in Microbiology, 2016, 7(25):206-215. |
[7] | FULLAONDO A, LEE S Y . Identification of putative miRNA involved in Drosophila melanogaster immune response. Developmental and Comparative Immunology, 2012,36(2):267-273. |
[8] | FU X, MENG Z, LIANG W, TIAN Y, WANG X, HAN W, LOU G, WANG X, LOU F, YEN Y, YU H, JOVE R, HUANG W . MiR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene, 2014,33(34):4296-4306. |
[9] | CHENG Y, XIANG G, MENG Y, DONG R . MiRNA-183-5p promotes cell proliferation and inhibits apoptosis in human breast cancer by targeting the PDCD4. Reproductive Biology, 2016, 16(3): 225-233. |
[10] | HESSAM S, SAND M, SKRYGAN M, GAMBICHLER T, BECHARA F G . Expression of miRNA-155, miRNA-223, miRNA-31, miRNA-21, miRNA-125b, and miRNA-146a in the Inflammatory Pathway of hidradenitis suppurativa. Inflammation, 2017,40(2):464-472. |
[11] | MAL C, AFTABUDDIN M, KUNDU S . IIKmTA: Inter and intra kingdom miRNA-target analyzer. Interdisciplinary Sciences, Computational Life Sciences, 2018,10(3):538-543. |
[12] | JONAS S, LZAURRALDE E . Towards a molecular understanding of microRNA-mediated gene silencing. Nature Reviews Genetics, 2015,16(7):421-433. |
[13] | FENG B, CHAKRABARTI S . MiR-320 regulates glucose-induced gene expression in diabetes. ISRN Endocrinology, 2012, 6(7):1-7. |
[14] | CIMMINO A, CALIN GA, FABBRI M, LORIO M V, FERRACIN M, SHIMIZU M, WOJCIK S E, AQEILAN R I, ZUPO S, DONO M, RASSENTI L, ALDER H, VOLINIA S, LIU C G, KIPPS T J, NEGRINI M, CROCE C M . MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(39):13944-13949. |
[15] | NALLAMSHETTY S, CHAN S Y, LOSCALZO J . Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radical Biology Medicine, 2013,64:20-30. |
[16] | YAO M, WANG X, TANG Y, ZHANG W, Cui B, Liu Q, Xing L . Dicer mediating the expression of miR-143 and miR-155 regulates hexokinase II associated cellular response to hypoxia. American Journal of Physiology-Lung Cellular Physiology, 2014,307(11):829-837. |
[17] | XU X, LIU C, BAO J . Hypoxia-induced hsa-miR-101 promotes glycolysis by targeting TIGAR mRNA in clear cell renal cell carcinoma. Molecular Medicine Reports, 2017,15(3):1373-1378. |
[18] | ZHANG G, YIN S, MAO J, LIANG F, ZHAO C, LI P, ZHOU G, CHEN S, TANG Z . Integrated analysis of mRNA-seq and miRNA-seq in the liver of Pelteobagrus vachelli in response to hypoxia. Scientific Reports, 2016,10(6):22907. |
[19] | 张阳阳 . miR-378在牛前体脂肪细胞分化的作用与机制[D]. 长春: 吉林大学, 2014. |
ZHANG Y Y . Effect and mechanism of bovine miR-378 in preadipocyte differention[D]. Changchun: Jilin University, 2014. (in Chinese) | |
[20] | LI H J, LIU M, YE S, YANG F . De novo assembly, gene annotation, and molecular marker development using Illumina paired-end transcriptome sequencing in the clam Saxidomus purpuratus. Genes & Genomics, 2017,39(6):675-685. |
[21] | 郭胜祥, 刘永年 . 高原适应动物牦牛与普通黄牛肺血管反应性的比较研究. 中国病理生理杂志, 1995, 11(3):230-233. |
GUO S X, LIU Y N . Comparative study on pulmonary vascular reactivity of plateau adapted animal Yak and common cattle. Chinese Journal of Pathophysiology, 1995,11(3):230-233. (in Chinese) | |
[22] | 金澄艳, 吕晓阳, 高雯, 王悦, 陈炜昊, 盛水兴, 陈玲, 林杰, 孙伟 . 湖羊羔皮毛囊候选miRNA在不同花纹间的表达与毛囊发育特性关联的研究. 中国农业科学, 2018,51(14):2814-2824. |
JIN C Y, LÜ X Y, GAO W, WANG Y, CHEN W H, SHEN S X, CHEN L, LIN J, SUN W . Study on the relationship between the expression of candidate miRNAs and the developmental characteristics in different patterns in Hu Sheep Lambskin. Scientia Agricultura Sinica, 2018,51(14):2814-2824. (in Chinese) | |
[23] | NALLAMSHETTY S, CHAN S Y, LOSCALZO J . Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radical Biology & Medicine, 2013,64:20-30. |
[24] | BURNSIDE J, OUYANG M, ANDERSON A, BERNBERG E, LU C, MEYERS B C, GREEN P J, MARKIS M, ISAACS G, HUANG E, MORGAN R W . Deep sequencing of chicken microRNAs. BMC Genomics, 2008,9(1):185. |
[25] | LORENZO F R, HUFF C, MYLLYMAKI M, OLENCHOCK B, SWIERCZEK S, TASHI T, GORDEUK V, WUREN T, RI-LI G, MCCLAIN D A, KHAN T M, KOUL P A, GUCHHAIT P, SALAMA M E, XING J, SEMENZA G L, LIBERZON E, WILSON A, SIMONSON T S, JORDE L B, KAELIN W G J, KOIVUNEN P, PRCHAL J T . A genetic mechanism for Tibetan high-altitude adaptation. Nature Genetics, 2014,46(9):951-956. |
[26] | QU Y, ZHAO H, HAN N, ZHOU G, SONG G, GAO B, TIAN S, ZHANG J, ZHANG R, MENG X, ZHANG Y, ZHANG Y, ZHU X, WANG W, LAMBERT D, ERICSON P G, SUBRAMANIAN S, YEUNG C, ZHU H, JIANG Z, LI R, LEI F . Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nature Communications, 2013,4:2071. |
[27] | VASUDEVAN S, TONG Y, STEITZ J A . Switching from repression to activation: microRNAs can up-regulate translation. Science, 2007, 318(5858):1931-1934. |
[28] | 贺大芳 . 牦牛和黄牛心脏、肺脏组织microRNA转录组的鉴定与差异表达分析[D]. 成都:四川农业大学, 2017. |
HE D F . Identification and differential expression analysis of microRNAs in heart and lung tissues between yak and cattle[D]. Chengdu: Sichuan Agricultural University, 2017. (in Chinese) | |
[29] | ZHANG Q, GOU W, WANG X, ZHANG Y, MA J, ZHANG H, ZHANG Y, ZHANG H . Genome resequencing identifies unique adaptations of Tibetan Chickens to hypoxia and high-dose ultraviolet radiation in high-altitude environments. Genome Biology and Evolution, 2016,8(3):765-776. |
[30] | 刘杰, 李景东 . 哺乳动物雷帕霉素靶蛋白信号通路在心脏发育和重构中作用的研究进展. 心血管病学进展, 2018(06):911-915. |
LIU J, LI J D . Research progress of mTOR signaling pathway effect in cardiac development and reconstruction. Advances in Cardiovascular Diseases, 2018(06):911-915. (in Chinese) | |
[31] | SCIARRETTA S, ZHAI P, MAEJIMA Y, DEL R D P, NAGARAJAN N, YEE D, LIU T, MAGNUSON M A, VOLPE M, FRATI G, LI H, SADOSHIMA J . mTORC2 regulates cardiac response to stress by inhibiting MST1. Cell Reports, 2015,11(1):125-136. |
[32] | VERMA P, SHARMA A, SODHI M, THAKUR K, KATERIA R S, NIRANJAN S K, BHARTI V K, KUMAR P, GIRI A, KALIA S, MUKESH M . Transcriptome analysis of circulating pbmcs to understand mechanism of high altitude adaptation in native cattle of ladakh region. Scientific Reports, 2018,8(1):7681. |
[33] | VERMA P, SHARMA A, SODHI M, THAKUR K, BHARTI V K, KUMAR P, GIRI A, KALIA S, SWAMI S K, MUKESH M . Overexpression of genes associated with hypoxia in cattle adapted to trans himalayan region of Ladakh. Cell Biology International, 2018,42(9):1141-1148. |
[34] | TAGUCHI A, YANAGISAWA K, TANAKA M, CAO K, MATSUYAMA Y, GOTO H, TAKAHASHI T . Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Research, 2008, 68(14):5540-5545. |
[35] | GIATROMANOLAKI A, BAI M, MARGARITIS D, BOURANTAS K L, KOUKOURAKIS M I, SIVRIDIS E, GATTER K C . Hypoxia and activated VEGF/receptor pathway in multiple myeloma. Anticancer Research, 2010,30(7):2831-2836. |
[36] | BEFANI C D, VLACHOSTERRGIOS P J, HATZIDAKI E, PATRIKIDOU A, BONANOU S, SIMOS G, PAPANDREOU C N, LIAKOS P . Bortezomib represses HIF-1α protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells. Journal of Molecular Medicine, 2012,90(1):45-54. |
[37] | MAJMUNDARR A J, WONG W J, SIMON M C . Hypoxia-inducible factors and the response to hypoxic stress. Molecular Cell, 2010,40(2):294-309. |
[38] | TAGUCHI A, YANAGISAWA K, TANAK A M, CAO K, MATSUYAMA Y, GOTO H, TAKAHASHI T . Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Research, 2008,68(14):5540-5545. |
[39] | CASCIO S, D'ANDREA A, FERLA R, SURMACZ E, GULOTTA E, AMODEO V, BAZAN V, GEBBIA N, RUSSO A . MiR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells. Journal of Cellular Physiology, 2010,224(1):242-249. |
[40] | 岳莹, 吕风华, 陈玉磊, 王卓, 司澳洋 . miR-499对缺氧/复氧诱导的心肌细胞凋亡的影响. 郑州大学学报(医学版), 2018,53(04):503-507. |
YUE Y, LÜ F H, CHEN Y L, WANG Z, SI A Y . Effect of miR-499 on apoptosis of primary cardiomyocytes induced by anoxia-reoxygenation. Journal of Zhengzhou University(Medical Sciences), 2018,53(04):503-507. (in Chinese) | |
[41] | 赵欣 . MicroRNA-101a通过靶向调控心脏成纤维细胞TGFβRI的表达抑制缺氧诱导的心肌纤维化[D]. 武汉:华中科技大学, 2015. |
ZHAO X . MicroRNA-101a inhibits hypoxia-induced myocardial fibrosis by targeting regulation of cardiac fibroblast TGFβRI expression[D]. Wuhan:Huazhong University of Science and Technology, 2015. (in Chinese) | |
[42] | XI T Y, JIN F, ZHU Y, WANG J, TANG L, WANG Y, LIEBESKKIND D S, HE Z . MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt. Biochemical and Biophysical Research Communications, 2017,494(1-2):144-151. |
[1] | 吴艳,张昊,梁振华,潘爱銮,申杰,蒲跃进,黄涛,皮劲松,杜金平. circ-13267通过let-7-19/ERBB4通路调控蛋鸭卵泡颗粒细胞凋亡[J]. 中国农业科学, 2022, 55(8): 1657-1666. |
[2] | 李宁,柳坤,刘彤彤,史雨刚,王曙光,杨进文,孙黛珍. 小麦响应干旱胁迫环状RNA的鉴定[J]. 中国农业科学, 2022, 55(23): 4583-4599. |
[3] | 马雪萌,余成敏,赛小玲,刘贞,桑海洋,崔百明. PSORA:一种基于高通量测序的T-DNA插入位点分析方法[J]. 中国农业科学, 2022, 55(15): 2875-2882. |
[4] | 杜宇,祝智威,王杰,王秀娜,蒋海宾,范元婵,范小雪,陈华枝,隆琦,蔡宗兵,熊翠玲,郑燕珍,付中民,陈大福,郭睿. 利用第三代纳米孔长读段测序技术构建和注释蜜蜂球囊菌的全长转录组[J]. 中国农业科学, 2021, 54(4): 864-876. |
[5] | 王雍,李思妍,何思锐,张迪,连帅,王建发,武瑞. BLV-miRNA跨界调控人类靶基因预测及生物信息学分析[J]. 中国农业科学, 2021, 54(3): 662-674. |
[6] | 邵美琪,赵卫松,苏振贺,董丽红,郭庆港,马平. 盐胁迫下枯草芽孢杆菌NCD-2对番茄促生作用及对土壤微生物群落结构的影响[J]. 中国农业科学, 2021, 54(21): 4573-4584. |
[7] | 陈慧芳,黄绮亮,胡智超,潘晓婷,吴志胜,白银山. 外泌体microRNA在猪成熟和闭锁卵泡中的表达差异及功能分析[J]. 中国农业科学, 2021, 54(21): 4664-4676. |
[8] | 赵卫松,郭庆港,苏振贺,王培培,董丽红,胡卿,鹿秀云,张晓云,李社增,马平. 马铃薯健株与黄萎病株根际土壤真菌群落结构及其对碳源利用特征[J]. 中国农业科学, 2021, 54(2): 296-309. |
[9] | 禹保军,邓占钊,辛国省,蔡正云,顾亚玲,张娟. 静原鸡肌肉组织肌苷酸特异性沉积相关LNC_003828- gga-miR-107-3p-MINPP1的关联分析[J]. 中国农业科学, 2021, 54(19): 4229-4242. |
[10] | 黄子粤,刘文君,覃仁柳,庞师婵,肖健,杨尚东. 不同品种南瓜内生细菌多样性及PICRUSt基因功能预测分析[J]. 中国农业科学, 2021, 54(18): 4018-4032. |
[11] | 谭照国,李艳梅,白建芳,郭昊宇,栗婷婷,段文静,刘子涵,苑少华,张天豹,张风廷,陈兆波,赵福永,赵昌平,张立平. 小麦TaBG的克隆及其在花药开裂中的潜在功能[J]. 中国农业科学, 2021, 54(13): 2710-2723. |
[12] | 赵卫松,郭庆港,李社增,王培培,鹿秀云,苏振贺,张晓云,马平. 花铃期棉花黄萎病抗病与感病品种对 土壤细菌群落结构的影响[J]. 中国农业科学, 2020, 53(5): 942-954. |
[13] | 孟淑君,张雪海,王琪月,张稳,黄力,丁冬,汤继华. 水稻根系盐胁迫响应miRNA和tRF的鉴定[J]. 中国农业科学, 2020, 53(4): 669-682. |
[14] | 赵园园,李鹏飞,许勤智,安清明,孟金柱. 山羊卵泡发育相关基因的筛选及分析[J]. 中国农业科学, 2020, 53(17): 3597-3605. |
[15] | 朱静静,周晓龙,汪涵,李向臣,赵阿勇,杨松柏. 靶向猪内质网应激通路的microRNAs预测与验证[J]. 中国农业科学, 2020, 53(15): 3169-3179. |
|