中国农业科学 ›› 2018, Vol. 51 ›› Issue (10): 1948-1959.doi: 10.3864/j.issn.0578-1752.2018.10.014
收稿日期:
2017-09-20
接受日期:
2017-12-07
出版日期:
2018-05-16
发布日期:
2018-05-16
联系方式:
联系方式:许瑞瑞,Tel:0536-8785288;E-mail:xuruirui2006@163.com。
基金资助:
RuiRui XU1,2(), Rui LI2, XiaoFei WANG2, YuJin HAO2
Received:
2017-09-20
Accepted:
2017-12-07
Published:
2018-05-16
Online:
2018-05-16
摘要:
目的 从苹果全基因组中鉴定OFP(OVATE family protein)家族蛋白成员,对其进行基因结构特征、组织表达及非生物逆境等系统分析,为研究苹果OFP的潜在功能提供理论基础。方法 利用生物信息学手段,在苹果基因组数据库中筛选鉴定OFP基因家族成员;利用MEGA5.0软件进行系统进化树分析;通过MapDraw和GSDS等生物信息学工具分析基因结构及染色体定位;根据已有的苹果芯片数据库结果进行OFP基因表达谱分析;利用实时荧光定量PCR技术检测13个MdOFP的组织表达和诱导表达情况。结果 苹果OFP基因家族包含28个成员,根据系统进化关系将其分为4组,分别包含13、6、4和5个成员;苹果中13条染色体上均有OFP基因分布,其中第12条染色体最多,有6个MdOFP成员,该基因家族的分布具有广泛性;芯片表达谱分析结果表明该类基因家族在花、果实和叶中的表达量较高,qRT-PCR验证结果较一致;经NaCl和PEG处理后,苹果根部与地上部呈现出不同程度的响应差异,NaCl处理明显诱导两组织中MdOFP04和MdOFP20的表达,MdOFP01、MdOFP12和MdOFP18的表达在根部与地上部组织则相反;温度胁迫明显影响MdOFPs的表达量,其中MdOFP04和MdOFP17经高温和低温胁迫处理后均明显上调。结论 苹果OFP基因家族共有28个成员,分布于13条染色体上,该家族成员呈现出不同的组织表达模式和胁迫响应模式。
许瑞瑞, 李睿, 王小非, 郝玉金. 苹果OFP基因家族的全基因组鉴定与非生物逆境表达分析[J]. 中国农业科学, 2018, 51(10): 1948-1959.
RuiRui XU, Rui LI, XiaoFei WANG, YuJin HAO. Identification and Expression Analysis Under Abiotic Stresses of OFP Gene Family in Apple[J]. Scientia Agricultura Sinica, 2018, 51(10): 1948-1959.
表1
qRT-PCR试验的引物序列"
基因名称 Gene name | 上游引物(5′-3′) Forward primer (5′-3′) | 下游引物(5′-3′) Reverse primer (5′-3′) |
---|---|---|
MdOFP01 | TCCCGTTTAGTTCTTCATCTTTC | CAGTGTGTCAATCTCGTCATC |
MdOFP03 | CGTGGTAGAAAGAGTGTGTC | GATAGCAAGCAAGCAGGTC |
MdOFP04 | CAACAACAACTCGTCCTTACAG | TTCCTTCACCACCGCAATG |
MdOFP06 | CGGAGGATGGGTTGGATTC | TTCTTGTTCTTCTTCAGTTCGC |
MdOFP07 | CGGAGGATGGGTTGGATTC | TTCTTGTTCTTCTTCAGTTCGC |
MdOFP08 | CAATGGAGGAAATGGTGGAATG | AGCAGAAAGAGCAAGAAGGAG |
MdOFP11 | GGAGGAGAAGACGCAATAGAG | CCCATCACCACCATCATCAG |
MdOFP12 | TTCAAGCCGTTCAGCCTCAG | GTTCATCACAAGACCGCCATC |
MdOFP13 | AGAGAGAAACACCACCGAAG | TTGCCCTGAGCGAGAAAG |
MdOFP16 | CTCCTTCTTGCTCTTTCTGC | CATCCTCCTCCTGACCTTG |
MdOFP17 | AGGGTGAATGGTAAGAGCAATC | GACGACAGCGACGAAGAAG |
MdOFP18 | TGCTGTGGTGAAGAAGTCG | CCCTGTGATGGTGTGTCG |
MdOFP20 | TCCTCCTCGCAGTCACAC | TTCCTTCACCACCGCAATG |
Md18S | ACACGGGGAGGTAGTGACAA | CCTCCAATGGATCCTCGTTA |
表2
苹果OFP基因家族信息"
基因名称Gene name | 基因ID号 Gene Identifier | 染色体定位 Chromosome location | 编码序列长度 CDS length (bp) | 外显子 数目 Exon no. | 大小 Size (aa) | 分子量Molecular weight (Da) | 等电点Isoelectric Point | 拟南芥同源基因 Best homologs in Arabidopsis |
---|---|---|---|---|---|---|---|---|
MdOFP01 | MDP0000243940 | chr2:4251394..4252275 | 882 | 1 | 293 | 33533.3 | 9.13 | AT5G66270.1 |
MdOFP02 | MDP0000155311 | chr2:13187873..13188835 | 963 | 1 | 320 | 25246.9 | 9.10 | AT1G19860.1 |
MdOFP03 | MDP0000684645 | chr3:4952419..4953570 | 1152 | 1 | 383 | 41697.8 | 8.99 | AT1G19860.1 |
MdOFP04 | MDP0000141642 | chr3:16219260..16220244 | 675 | 2 | 224 | 25723.6 | 9.51 | AT1G19860.1 |
MdOFP05 | MDP0000733399 | chr3:31034178..31034924 | 747 | 1 | 248 | 79142.9 | 5.58 | AT2G02160.1 |
MdOFP06 | MDP0000134728 | chr4:17309604..17310695 | 1092 | 1 | 363 | 72112.4 | 6.00 | AT5G12440.3 |
MdOFP07 | MDP0000147045 | chr4:17310063..17310721 | 627 | 2 | 208 | 26669.0 | 8.73 | AT3G12130.1 |
MdOFP08 | MDP0000158931 | chr5:941980..942486 | 507 | 1 | 168 | 51797.0 | 8.27 | AT5G18550.1 |
MdOFP09 | MDP0000241313 | chr5:5755844..5757320 | 1296 | 2 | 431 | 30624.6 | 9.44 | AT3G12130.1 |
MdOFP10 | MDP0000402356 | chr7:5438947..5439702 | 756 | 1 | 251 | 40999.8 | 8.81 | AT3G08505 |
MdOFP11 | MDP0000296199 | chr8:3579420..3580445 | 1026 | 1 | 341 | 47229.3 | 7.10 | AT2G41900.1 |
MdOFP12 | MDP0000155705 | chr10:26964000..26965493 | 1296 | 2 | 431 | 79656.8 | 6.14 | AT3G51950 |
MdOFP13 | MDP0000909475 | chr10:32149450..32149956 | 507 | 1 | 168 | 16845.6 | 8.27 | AT5G26749.1 |
MdOFP14 | MDP0000156202 | chr11:4775252..4776394 | 1143 | 1 | 380 | 91640.3 | 7.22 | AT1G10320.1 |
MdOFP15 | MDP0000311969 | chr11:22625025..22626007 | 549 | 2 | 182 | 75934.3 | 6.24 | AT1G30460.1 |
MdOFP16 | MDP0000127146 | chr11:32348926..32350337 | 912 | 2 | 303 | 73772.2 | 6.10 | AT1G30460.1 |
MdOFP17 | MDP0000669940 | chr12:3242911..3248219 | 957 | 3 | 318 | 20954.5 | 6.24 | AT3G48440.1 |
MdOFP18 | MDP0000137053 | chr12:3317131..3317688 | 558 | 1 | 185 | 65503.5 | 9.21 | AT1G19860.1 |
MdOFP19 | MDP0000456557 | chr12:14175298..14181532 | 1317 | 3 | 438 | 98062.9 | 5.78 | AT3G51120.1 |
MdOFP20 | MDP0000692068 | chr12:21920389..21922396 | 1098 | 2 | 365 | 20469.1 | 9.34 | AT1G66810.1 |
MdOFP21 | MDP0000238712 | chr12:21920806..21921922 | 1065 | 2 | 354 | 93378.1 | 8.34 | AT3G27700 |
MdOFP22 | MDP0000332435 | chr12:25821429..25822584 | 1161 | 1 | 386 | 77290.9 | 6.31 | AT2G33835.1 |
MdOFP23 | MDP0000410437 | chr13:18948503..18949252 | 750 | 1 | 249 | 76306.6 | 6.34 | AT2G41900.1 |
MdOFP24 | MDP0000943578 | chr13:25670394..25671158 | 765 | 1 | 254 | 57322.6 | 5.28 | AT1G01350.1 |
MdOFP25 | MDP0000243386 | chr14:4693458..4695714 | 1020 | 2 | 339 | 22465.2 | 6.99 | AT3G19360.1 |
MdOFP26 | MDP0000140421 | chr15:11737514..11738332 | 822 | 1 | 273 | 44526 | 9.32 | AT3G47120.1 |
MdOFP27 | MDP0000259366 | chr17:16535235..16536098 | 864 | 1 | 287 | 76587.0 | 5.93 | AT2G02160.1 |
MdOFP28 | MDP0000921224 | chr0:61416319..61416894 | 576 | 1 | 191 | 172448.5 | 8.12 | AT1G21580.1 |
[1] |
LIU J, VAN ECK J, CONG B, TANKSLEY S D.A new class of regulatory genes underlying the cause of pear-shaped tomato fruit.Proceedings of the National Academy of Sciences of the USA, 2002, 99: 13302-13306.
doi: 10.1073/pnas.162485999 pmid: 12242331 |
[2] |
WANG S, CHANG Y, GUO J, CHEN J G.Arabidopsis Ovate Family Protein 1 is a transcriptional repressor that suppresses cell elongation.Plant Journal, 2007, 50: 858-872.
doi: 10.1111/j.1365-313X.2007.03096.x pmid: 17461792 |
[3] |
WANG S, CHANG Y, GUO J, ZENG Q, ELLIS B E, CHEN J G.Arabidopsis ovate family proteins, a novel transcriptional repressor family, control multiple aspects of plant growth and development.PLoS ONE, 2011, 6: e23896.
doi: 10.1371/journal.pone.0023896 pmid: 3160338 |
[4] | 江成. 光皮桦BlOFPs基因的克隆及其功能研究[D]. 杭州: 浙江农林大学, 2014. |
JIANG C.Isolation and functional analysis of BlOFPs genes in Betula luminifera [D]. Hangzhou: Zhejiang A & F University, 2014. (in Chinese) | |
[5] | HUANG Z, VAN HOUTEN J, GONZALEZ G, XIAO H, VAN DER KNAAP E. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato.Molecular Genetics Genomics, 2013, 288: 111-129. |
[6] |
YU H, JIANG W, LIU Q, ZHANG H, PIAO M, CHEN Z, BIAN M.Expression pattern and subcellular localization of the ovate protein family in rice.PLoS ONE, 2015, 10: e0118966.
doi: 10.1371/journal.pone.0118966 pmid: 25760462 |
[7] | 于慧. 水稻OsOFP转录因子家族基因克隆与功能分析[D]. 吉林: 吉林大学, 2015. |
YU H.Gene cloning and functional analysis of the OsOFP transcription factor in rice [D]. Jilin: Jilin University, 2015. (in Chinese) | |
[8] | 林冰. 水稻OFP1与OFP2的转基因功能研究[D]. 江苏: 扬州大学, 2011. |
LIN B.Functional analysis of the OsOFP1 and OsOFP2 gene in rice [D]. Jiangsu: Yangzhou University, 2011. (in Chinese) | |
[9] | HACKBUSCH J, RICHTER K, MULLER J, SALAMINI F, UHRIG J F.A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proceedings of the National Academy of Sciences of the USA, 2005, 102: 4908-4912. |
[10] |
WANG Y K, CHANG W C, LIU P F, HSIAO M K, LIN C T,LIN S M,PAN R L.Ovate family protein 1 as a plant Ku70 interacting protein involving in DNA double-strand break repair. Plant Molecular Biology, 2010, 74(4/5): 453-466.
doi: 10.1007/s11103-010-9685-5 pmid: 20844935 |
[11] |
PAGNUSSAT G C, YU H J, SUNDARESAN V.Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. The Plant Cell, 2007, 19: 3578-3592.
doi: 10.1105/tpc.107.054890 |
[12] |
LI E, WANG S, LIU Y, CHEN J G, DOUGLAS C J.OVATE FAMILY PROTEIN4 (OFP4) interaction with KNAT7 regulates secondary cell wall formation in Arabidopsis thaliana. Plant Journal, 2011, 67: 328-341.
doi: 10.1111/j.1365-313X.2011.04595.x pmid: 21457372 |
[13] |
LIU Y, DOUGLAS C J.A role for OVATE FAMILY PROTEIN1 (OFP1) and OFP4 in a BLH6-KNAT7 multi-protein complex regulating secondary cell wall formation in Arabidopsis thaliana. Plant Signaling Behavoir, 2015, 10(7): e1033126.
doi: 10.1080/15592324.2015.1033126 pmid: 26107719 |
[14] | VELASCO R, ZHARKIKH A, AFFOURTIT J, DHINGRA A, CESTARO A,et al. The genome of the domesticated apple(Malus× domestica Borkh.). Nature Genetics, 2010, 42: 833-839. |
[15] |
DUVICK J, FU A, MUPPIRALA U, SABHARWAL M, WILKERSON M D, LAWRENCE CJ, LUSHBOUGH C, BRENDEL V.PlantGDB: A resource for comparative plant genomics.Nucleic Acids Research, 2008, 36: D959-965.
doi: 10.1093/nar/gkm1041 pmid: 18063570 |
[16] | POOLE R L.The TAIR database. Methods Molecular Biology, 2007, 406: 179-212. |
[17] |
ZHANG S Z, CHEN G H, LIU Y K, CHEN H, YANG G D, YUAN X W, JIANG Z S, SHU H R.Apple gene function and gene family database: an integrated bioinformatics database for apple research.Plant Growth Regulation, 2013, 70: 199-206.
doi: 10.1007/s10725-013-9787-6 |
[18] |
XU Q, DUNBRACK R L.Assignment of protein sequences to existing domain and family classification systems: Pfam and the PDB.Bioinformatics, 2012, 28(21): 2763-2772.
doi: 10.1093/bioinformatics/bts533 pmid: 22942020 |
[19] |
王小非, 刘鑫, 苏玲, 孙永江, 张世忠, 郝玉金, 由春香. 番茄LBD基因家族的全基因组序列鉴定及其进化和表达分析. 中国农业科学, 2013, 46(12): 2501-2513.
doi: 10.3864/j.issn.0578-1752.2013.12.011 |
WANG X F, LIU X, SU L, SUN Y J, ZHANG S Z, HAO Y J, YOU C X.Identification, evolution and expression analysis of the LBD gene family in tomato.Scientia Agricultura Sinica, 2013, 46(12): 2501-2513. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.12.011 |
|
[20] |
MARCHLER-BAUER A, ZHENG C, CHITSAZ F, DERBYSHIRE M K, GEER L Y, GEER R C, GONZALES N R, GWADZ M, HURWITZ D I, LANCZYCKI C J.CDD: conserved domains and protein three-dimensional structure.Nucleic Acids Research, 2012, 30(1): 281-283.
doi: 10.1093/nar/gks1243 pmid: 3531192 |
[21] | FINN R D, BATEMAN A, CLEMENTS J, COGGILL P, EBERHARDT R Y, EDDY S R, HEGER A, HETHERINGTON K, HOLM L, MISTRY J, SONNHAMMER E L, TATE J, PUNTA M.Pfam: the protein families database.Nucleic Acids Research, 2014, 42: D222-230. |
[22] |
ARTIMO P, JONNALAGEDDA M, ARNOLD K, BARATIN D, CSARDI G, DE CASTRO E, DUVAUD S, FLEGEL V, FORTIER A, GASTEIGER E.ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 2012, 40: W597-603.
doi: 10.1093/nar/gks400 pmid: 22661580 |
[23] |
EDGAR R C.MUSCLE: a multiple sequence alignment method with reduced time and space complexity.BMC Bioinformatics, 2004, 5: 113.
doi: 10.1186/1471-2105-5-113 pmid: 15318951 |
[24] | TAMURA K, PETERSON D, PETERSON N, STECHER G, NEI M, KUMAR S.MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10): 2731-2739. |
[25] |
LIU R H, MENG J L.MapDraw: A microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data.Hereditas, 2003, 25(3): 317-321.
doi: 10.1016/S0891-0618(02)00103-5 pmid: 15639879 |
[26] |
GUO A Y, ZHU Q H, CHEN X, LUO J C.GSDS: a gene structure display server.Hereditas, 2007, 29(8): 1023-1026.
doi: 10.1360/yc-007-1023 pmid: 17681935 |
[27] |
KRZYWINSKI M, SCHEIN J, BIROL I, CONNORS J, GASCOYNE R, HORSMAN D, JONES S J, MARRA M A.Circos: An information aesthetic for comparative genomics.Genome Research, 2009, 19: 1639-1645.
doi: 10.1101/gr.092759.109 pmid: 19541911 |
[28] |
LYONS E, PEDERSEN B, KANE J, ALAM M, MING R, TANG H, WANG X, BOWERS J, PATERSON A, LISCH D, FREELING M.Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiology, 2008, 148(4): 1772-1781.
doi: 10.1104/pp.108.124867 pmid: 18952863 |
[29] |
LIBRADO P, ROZAS J.DnaSP v5: A software for comprehensive analysis of DNA polymorphism data.Bioinformatics, 2009, 25: 1451-1452.
doi: 10.1093/bioinformatics/btp187 pmid: 19346325 |
[30] |
ROZAS J.DNA sequence polymorphism analysis using DnaSP.Methods Molecular Biology, 2009, 537: 337-350.
doi: 10.1007/978-1-59745-251-9_17 pmid: 19378153 |
[31] |
VALLIYODAN B, NGUYEN H T.Understanding regulatory networks and engineering for enhanced drought tolerance in plants.Current Opinion in Plant Biology, 2006, 9: 189-195.
doi: 10.1016/j.pbi.2006.01.019 pmid: 16483835 |
[32] | PIERIK R, TEATERINK C.The art of being flexible: How to escape from shade, salt, and drought.Plant Physiology, 2014, 166: 5-22. |
[33] |
XU Z Z, ZHOU G S, SHIMIZU H.Plant responses to drought and rewatering.Plant Signaling and Behavior, 2010, 5(6): 649-654.
doi: 10.4161/psb.5.6.11398 pmid: 3001553 |
[1] | 王兆昊, 郭兴茹, 张乐欢, 何永睿, 陈善春, 姚利晓. csi-miR399响应柑橘溃疡病菌侵染的表达模式及其抗病性分析[J]. 中国农业科学, 2023, 56(8): 1484-1493. |
[2] | 李慧, 张雨峰, 李晓刚, 王中华, 蔺经, 常有宏. 全基因组DNA甲基化和转录组联合分析鉴定杜梨耐盐相关转录因子[J]. 中国农业科学, 2023, 56(7): 1377-1390. |
[3] | 渠清, 刘宁, 邹金鹏, 张雅璇, 贾慧, 孙蔓莉, 曹志艳, 董金皋. 拟轮枝镰孢与玉米籽粒互作的差异基因筛选及代谢通路分析[J]. 中国农业科学, 2023, 56(6): 1086-1101. |
[4] | 孙政, 赖忠晓, 赵晓敏, 江志利, 陈光友, 马志卿. 渭北旱塬苹果病虫害全程生物防控技术应用效果评价[J]. 中国农业科学, 2023, 56(6): 1102-1112. |
[5] | 郑文燕, 常源升, 何平, 何晓文, 王森, 高文胜, 李林光, 王海波. ‘鲁丽’ב红1#’苹果杂交群体全基因组KASP标记开发及验证[J]. 中国农业科学, 2023, 56(5): 935-950. |
[6] | 王子盾, 王辉, 冯郁晨, 张学良, 闫雷玉, 刘小杰, 赵政阳. 不同颜色育果袋对‘瑞雪’苹果果实品质的影响[J]. 中国农业科学, 2023, 56(4): 729-740. |
[7] | 邹婷, 刘丽莉, 向建华, 周定港, 吴金锋, 李莓, 李宝, 张大为, 严明理. 芸薹属植物MYBL2基因的克隆及其在A、B、C基因组中的PCR鉴别[J]. 中国农业科学, 2023, 56(3): 416-429. |
[8] | 朱莜芸, 曾玉玲, 李博, 袁玉洁, 周星, 李秋萍, 何辰延, 陈勇, 王丽, 程红, 周伟, 陶有凤, 雷小龙, 任万军, 邓飞. 花后弱光胁迫对成都平原籼稻米饭食味品质的影响[J]. 中国农业科学, 2023, 56(3): 430-440. |
[9] | 李星星, 周国富, 骆官雨, 陈思蓉, 张金龙, 陈国华, 张晓明. 橘小实蝇对不同品种苹果的选择偏好及适应性[J]. 中国农业科学, 2023, 56(17): 3358-3371. |
[10] | 李民吉, 李兴亮, 张强, 周佳, 杨雨璋, 周贝贝, 张军科, 魏钦平. 重茬条件下距原栽植行不同距离对G935自根砧‘宫藤富士’幼树树体生长和果实产量的影响[J]. 中国农业科学, 2023, 56(17): 3412-3419. |
[11] | 李佳琦, 荀咪, 石钧元, 宋建飞, 石宇佳, 张玮玮, 杨洪强. 苹果幼树根际和根内细菌丰度及根际酶活性对土壤紧实胁迫的响应特征[J]. 中国农业科学, 2023, 56(13): 2563-2573. |
[12] | 楚燕蒙, 毛颖超, 蔡剑, 周琴, 戴廷波, 王笑, 姜东. 二氢卟吩铁对小麦渍水胁迫耐性的影响[J]. 中国农业科学, 2023, 56(10): 1848-1858. |
[13] | 张克坤,陈可钦,李婉平,乔浩蓉,张俊霞,刘凤之,房玉林,王海波. 灌水量对限根栽培‘阳光玫瑰’葡萄果实发育与香气物质积累的影响[J]. 中国农业科学, 2023, 56(1): 129-143. |
[14] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[15] | 莫文静,朱嘉伟,何新华,余海霞,江海玲,覃柳菲,张艺粒,李雨泽,罗聪. 芒果MiZAT10A和MiZAT10B功能分析[J]. 中国农业科学, 2023, 56(1): 193-202. |
|