[1] Guo W Z, Zhang T Z, Zhu X F, Pan J J. Modified backcross pyramiding breeding with molecular marker-assisted selection and its applications in cotton. Acta Agronomica Sinica, 2005, 31: 963-970.
[2] 薛石玉, 刘建慧, 吴跃. 水稻转bar基因恢复系选育初报. 杂交水稻, 1999, 14(3): 11-12.
Xue S Y, Liu J H, Wu Y. A preliminary report on breeding of Bar gene transgenic restorers in rice. Hybrid Rice, 1999, 14(3): 11-12. (in Chinese)
[3] Ramos H C C, Pereira1 M G, Silva F F, Gonçalves L S A, Pinto F O, de Souza Filho G A, Pereira T S N. Genetic characterization of papaya plants (Carica papaya L.) derived from the first back cross generation. Genetics and Molecular Research, 2011, 10: 393-403.
[4] 杨华, 杨俊品. 利用phi116和umc1044标记选育抗纹枯病玉米品系. 分子植物育种, 2007, 5(3): 347-352.
Yang H, Yang J P. Developing the maize lines based on selections of phi116 and umc1044 markers which are resistant to sheath blight. Molecular Plant Breeding, 2007, 5(3): 347-352. (in Chinese)
[5] Ho J C, McCouch S R, Smith M E. Improvement of hybrid yield by advanced backcross QTL analys is in elite maize. Theoretical Applied Genetics, 2002, 105: 440-448.
[6] 翁东旭, 徐世昌, 万安民, 李景鹏, 吴立人. 小麦条锈菌鉴别寄主抗条锈病基因Yr9的微卫星标记. 遗传学报, 2005, 32: 937-941.
Weng D X, Xu S C, Wan A M, Li J P, Wu L R. Microsatellite marker to the resistance gene Yr9 of differential. Acta Genetica Sinica, 2005, 32: 937-941. (in Chinese)
[7] Lewis R S, Milla S R, Levin J S. Molecular and genetic characterization of Nicotiana glutinosa L. chromosome segments in tobacco mosaic virus-resistant tobacco accessions. Crop Science, 2005, 45(6): 2355-2362.
[8] Whitham S, Mccormict S, Baker B. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Plant Biology, 1996, 8(93): 8776-8781.
[9] 高玉龙, 肖炳光, 卢秀萍, 许石剑. 烟草抗TMV基因连锁分子标记的筛选及在抗病资源筛选中的应用. 分子植物育种, 2011, 9(5): 585-591.
Gao Y L, Xiao B G, Lu X P, Xu S J. Identification of molecular markers linked to TMV resistance gene in tobacco and its application in screening resistance varieties. Molecular Plant Breeding, 2011, 9(5): 585-591. (in Chinese)
[10] Jung C, Muller A E. Flowering time control and applications in plant breeding. Trends in Plant Science, 2009, 14: 10563-10573.
[11] Jaeger K E, Graf A A, Wigge P A. The control of flowering in time and space. Journal of Experimental Botany, 2006(57): 3415-3418.
[12] Hsu C Y, Liu Y X, Luthe D S, Yuceer C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. The Plant Cell, 2006, 18: 1846-1861.
[13] 姜丹, 梁建丽, 陈晓丽, 洪波, 贾文锁, 赵梁军. 拟南芥花期基因FT转化切花菊‘神马’. 园艺学报, 2010, 37(3): 441-448.
Jiang D, Liang J L, Chen X L, Hong B, Jia W S, Zhao L J. Transformation of Arabidopsis flowering gene FT to from cut chrysanthemum‘Jinba’ by Agrobacterium mediate. Acta Horticulturae Sinica, 2010, 37(3): 441-448. (in Chinese)
[14] Tamaki S, Matsuo S, Wong H L, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science, 2007, 316: 1033-1036.
[15] Lin M K, Belanger H, Lee Y J, Varkonyi-Gasic E, Taoka K I, Miura E, Xoconostle-Cazares B, Gendler K, Jorgensene R A, Phinney B, Lough T J, Lucas W J. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. The Plant Cell, 2007, 19: 1488-1506.
[16] Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309: 1052-1056.
[17] Koornneef M, Alonso-Blanco C, Peeters A J M, Soppe W. Genetic control of flowering time in Arabidopsis. Plant Physiology, 1998, 49: 345-370.
[18] Corbesier L, Vincent C, Jang S H, Fornara F, Fan Q Z, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316(5827): 1030-1033.
[19] 张焕玲. FT基因转化白杨杂种促进其早期开花的研究[D]. 杨凌: 西北农林科技大学, 2010.
Zhang H L. Genetic transformation of FT gene and precocious flowering induction on hybrid aspens[D]. Yangling: Northwest A&F University, 2010. (in Chinese)
[20] Bohlenius H, Huang T, Charbonnel-Campaa L, Runner A M B, Jansson S, Strauss S H, Nilsson O. CO/FT regulatory module controlstiming of flowering and seasonal growth cessation in trees. Science, 2006, 312: 1039-1043.
[21] Lewis R S, Kernodle S P. A method for accelerated trait conversion in plant breeding. Theoretical Applied Genetics, 2009, 118: 1499-1508.
[22] Eickholt D P, Lewis R S.Breeding cycles expedited by FT-mediated reduction in generation time. Crop Science, 2013, 53: 2384-2391.
[23] Yamagishi N, Yoshikawa N. Expression of FLOWERING LOCUS T from Arabidopsis thaliana induces precocious flowering in soybean irrespective of maturity group and stem growth habit. Planta, 2011, 233: 561-568.
[24] Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernali- zation gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences of the United States of America,2006, 12(103): 19581-19586.
[25] Yamagishi N, Sasaki S, Yamagata K, Komori S, Nagase M, Wada M, Yamamoto T, Yoshikawa N. Promotion of flowering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the Apple latent spherical virus vector. Plant Molecular Biology, 2011, 75(1/2): 193-204.
[26] Wenzel S, Flachowsky H, Hanke M V. The Fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus×domestica Borkh.). Plant Cell, Tissue and Organ Culture, 2013: 1-11.
[27] Matsuda N, Ikeda K, Kurosaka M, Takashina T, Isuzugawa K, Endo T, Omura M. Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. Journal of the Japanese Society for Horticultural Science, 2009, 78(4): 410-416.
[28] Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M. Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Research, 2005, 14(5): 703-712.
[29] Kotoda N, Wada M, Masuda T, Soejima J. The break-through in the reduction of juvenile phase in apple using transgenic approaches. Acta Horticulturae, 2002, 625: 337-343.
[30] Kotoda N, Iwanami H, Takahashi S, Abe K. Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. Journal of the American Society for Horticultural Science, 2006, 131(1): 74-81.
[31] Flachowsky H, Peil A, Hanke M V, Trankner C, Szankowski I, Lehmann S. Functional characterization of two antagonistic acting flowering genes in apple Malus×domestica Borkh.//XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on 929. 2010: 351-356.
[32] Freiman A, Shlizerman L, Golobovitch S, Yablovitz Z, Korchinsky R, Cohen Y, Samach A, Chevreau E, Le Roux P M, Patocchi A, Flaishman M A. Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta, 2012, 235(6): 1239-1251.
[33] 高玉龙, 肖炳光, Dewey R E. 诱导烟草早花的PVX-FT系统的建立. 中国烟草学报, 2013, 19(6): 102-105.
Gao Y L, Xiao B G, Ralph E D. Construction of PVX-FT system that inducing early flowering in tobacco. Acta Tabacaria Sinica, 2013, 19(6): 102-105. (in Chinese)
[34] 李文凤, 季静, 王罡, 王海勇, 牛宝龙. 提高转基因植物标记基因安全性策略的研究进展. 中国农业科学, 2010, 43(9): 1761-1770.
Li W F, Ji J, Wang G, Wang H Y, Niu B L. Strategies on the safety of selectable marker genes in transgenic plant. Scientia Agricultura Sinica, 2010, 43(9): 1761-1770. (in Chinese) |