[1] |
RABBEE M F, ALI M S, CHOI J, HWANG B S, JEONG S C, BAEK K H. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 2019, 24(6):1046.
doi: 10.3390/molecules24061046
|
[2] |
RAHMAN A, UDDIN W, WENNER N G. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Molecular Plant Pathology, 2015, 16(6):546-558.
doi: 10.1111/mpp.2015.16.issue-6
|
[3] |
FAN B, BLOM J, KLENK H P, BORRISS R. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “Operational Group B. amyloliquefaciens” within the B. subtilis species complex. Frontiers in Microbiology, 2017, 8:22.
|
[4] |
FAN B, WANG C, SONG X F, DING X L, WU L M, WU H J, GAO X F, BORRISS R. Bacillus velezensis FZB42 in 2018: The Gram-positive model strain for plant growth promotion and biocontrol. Frontiers in Microbiology, 2018, 9:2491.
doi: 10.3389/fmicb.2018.02491
|
[5] |
PANDIN C, DARSONVAL M, MAYEUR C, LE COQ D, AYMERICH S, BRIANDET R. Biofilm formation and synthesis of antimicrobial compounds by the biocontrol agent Bacillus velezensis QST713 in an Agaricus bisporus compost micromodel. Applied and Environmental Microbiology, 2019, 85(12):e00327-19.
|
[6] |
CHEN M, WANG J, LIU B, ZHU Y, XIAO R, YANG W, GE C, CHEN Z. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiology, 2020, 20(1):160.
doi: 10.1186/s12866-020-01851-2
|
[7] |
WANG N B, LIU M J, GUO L H, YANG X F, QIU D W. A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in tobacco. International Journal of Biological Sciences, 2016, 12(6):757-767.
doi: 10.7150/ijbs.14333
|
[8] |
RANF S, GISCH N, SCHAFFER M, ILLIG T, WESTPHAL L, KNIREL Y A, SANCHEZ-CARBALLO P M, ZAHRINGER U, HUCKELHOVEN R, LEE J, SCHEEL D. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nature Immunology, 2015, 16(4):426-433.
doi: 10.1038/ni.3124
|
[9] |
HE P, SHAN L, SHEEN J. Elicitation and suppression of microbe- associated molecular pattern-triggered immunity in plant-microbe interactions. Cellular Microbiology, 2007, 9(6):1385-1396.
doi: 10.1111/cmi.2007.9.issue-6
|
[10] |
NEWMAN M A, SUNDELIN T, NIELSEN J T, ERBS G. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science, 2013, 4:139.
|
[11] |
NAVEED Z A, WEI X, CHEN J, MUBEEN H, ALI G S. The PTI to ETI continuum in Phytophthora-plant interactions. Frontiers in Plant Science, 2020, 11:593905.
doi: 10.3389/fpls.2020.593905
|
[12] |
KUMAR D. Salicylic acid signaling in disease resistance. Plant Science, 2014, 228:127-134.
doi: 10.1016/j.plantsci.2014.04.014
|
[13] |
SUMAYO M S, SON J S, GHIM S Y. Exogenous application of phenylacetic acid promotes root hair growth and induces the systemic resistance of tobacco against bacterial soft-rot pathogen Pectobacterium carotovorum subsp. carotovorum. Functional Plant Biology, 2018, 45(11):1119-1127.
doi: 10.1071/FP17332
|
[14] |
ZHENG X Y, ZHOU M, YOO H, PRUNDA-PAZ J L, SPIVEY N W, KAY S A, DONG X. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30):9166-9173.
|
[15] |
BACKER R, NAIDOO S, VAN DEN BERG N. The nonexpressor of pathogenesis-related genes 1 (NPR1) and related family: Mechanistic insights in plant disease resistance. Frontiers in Plant Science, 2019, 10:102.
doi: 10.3389/fpls.2019.00102
|
[16] |
LINCOLN J E, SANCHEZ J P, ZUMSTEIN K, GILCHRIST D G. Plant and animal PR1 family members inhibit programmed cell death and suppress bacterial pathogens in plant tissues. Molecular Plant Pathology, 2018, 19(9):2111-2123.
doi: 10.1111/mpp.2018.19.issue-9
|
[17] |
FRANKOWSKI K, KESY J, KOTARBA W, KOPCEWICZ J. Ethylene signal transduction pathway. Postepy Biochemii, 2008, 54(1):99-106.
|
[18] |
PETRUZZELL L, CORAGGIO I, LEUBNER-METZGER G. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase. Planta, 2000, 211(1):144-149.
doi: 10.1007/s004250000274
|
[19] |
ZHANG F, WANG L, QI B, ZHAO B, KO E E, RIGGAN N D, CHIN K, QIAO H. EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(38):10274-10279.
|
[20] |
WEN X, ZHANG C, JI Y, ZHAO Q, HE W, AN F, JIANG L, GUO H. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Research, 2012, 22(11):1613-1616.
doi: 10.1038/cr.2012.145
|
[21] |
AN F, ZHAO Q, JI Y, LI W, JIANG Z, YU X, ZHANG C, HAN Y, HE W, LIU Y, ZHANG S, ECKER J R, GUO H. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. The Plant Cell, 2010, 22(7):2384-2401.
doi: 10.1105/tpc.110.076588
|
[22] |
KIM M, LEE C, PARK J, JEON B Y, HONG M. Crystal structure of Bacillus cereus flagellin and structure-guided fusion-protein designs. Scientific Reports, 2018, 8(1):5814.
doi: 10.1038/s41598-018-24254-w
|
[23] |
MOHARI B, THOMPSON M A, TRINIDAD J C, SETAYESHGAR S, FUQUA C. Multiple flagellin proteins have distinct and synergistic roles in Agrobacterium tumefaciens motility. Journal of Bacteriology, 2018, 200(23):e00327-18.
|
[24] |
BERG H C, ANDERSON R A. Bacteria swim by rotating their flagellar filaments. Nature, 1973, 245(5425):380-382.
doi: 10.1038/245380a0
|
[25] |
FORSTNERIC V, IVICAK-KOCJAN K, LJUBETIC A, JERALA R, BENCINA M. Distinctive recognition of flagellin by human and mouse toll-like receptor 5. PLoS ONE, 2016, 11(7):e0158894.
doi: 10.1371/journal.pone.0158894
|
[26] |
MCNAMARA N, GALLUP M, SUCHER A, MALTSEVA I, MCKEMY D, BASBAUM C. AsialoGM1 and TLR5 cooperate in flagellin-induced nucleotide signaling to activate Erk1/2. American Journal of Respiratory Cell and Molecular Biology, 2006, 34(6):653-660.
doi: 10.1165/rcmb.2005-0441OC
|
[27] |
VANTHANA M, NAKKEERAN S, MALATHI V G, RENUKADEVI P, VINODKUMAR S. Induction of in planta resistance by flagellin (Flg) and elongation factor-TU (EF-Tu) of Bacillus amyloliquefaciens (VB7) against groundnut bud necrosis virus in tomato. Microbial Pathogenesis, 2019, 137:103757.
doi: 10.1016/j.micpath.2019.103757
|
[28] |
刘秀霞, 梁宇宁, 张伟伟, 霍艳红, 冯守千, 邱化荣, 何晓文, 吴树敬, 陈学森. 超表达MdFLS2的拟南芥fls2突变体识别细菌鞭毛蛋白提高对轮纹病菌的抗性. 园艺学报, 2018, 45(5):827-844.
|
|
LIU X X, LIANG Y N, ZHANG W W, HUO Y H, FENG S Q, QIU H R, HE X W, WU S J, CHEN X S. MdFLS2 recognizes bacterial flagellin flg22 and enhances immune resistance against apple ring rot causal fungi in Arabidopsis fls2 mutant. Acta Horticulturae Sinica, 2018, 45(5):827-844. (in Chinese)
|
[29] |
RAJAMANICKAM S, NAKKEERAN S. Flagellin of Bacillus amyloliquefaciens works as a resistance inducer against groundnut bud necrosis virus in chilli (Capsicum annuum L.). Archives of Virology, 2020, 165(7):1585-1597.
doi: 10.1007/s00705-020-04645-z
|
[30] |
谷医林, 王远宏, 常若葵, 李宁, 李娟, 徐明珠. 解淀粉芽孢杆菌LJ1诱导黄瓜抗白粉病的研究. 农药学学报, 2013, 15(3):293-298.
|
|
GU Y L, WANG Y H, CHANG R K, LI N, LI J, XU M Z. Characterization of powdery mildew resistance induced by Bacillus amyloliquefaciens LJ1 in cucumber. Chinese Journal of Pesticide Science, 2013, 15(3):293-298. (in Chinese)
|
[31] |
柴庆凯, 张斌, 常若葵, 刘慧芹, 田小卫, 王远宏. 解淀粉芽孢杆菌LJ02对黄瓜抗灰霉病菌的生防效果及其诱导抗性机理的初步研究. 植物病理学报, 2019, 49(6):828-835.
|
|
CHAI Q K, ZHANG B, CHANG R K, LIU H Q, TIAN X W, WANG Y H. Preliminary study on the effect of the induced resistance in cucumber with Bacillus amyloliquefaciens LJ02 against Botrytis cinerea. Acta Phytopatholgica Sinica, 2019, 49(6):828-835. (in Chinese)
|
[32] |
LI Y L, GU Y L, LI J, XU M Z, WEI Q, WANG Y H. Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Frontiers in Microbiology, 2015, 6:883.
|
[33] |
GOODING G V, HEBERT T T. A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology, 1967, 57(11):1285.
|
[34] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262
|
[35] |
ALONSO J M, HIRAYAMA T, ROMAN G, NOURIZADEH S, ECKER J R. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 1999, 284(5423):2148-2152.
doi: 10.1126/science.284.5423.2148
|
[36] |
SOLANO R, STEPANOVA A, CHAO Q, ECHER J R. Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes and Development, 1998, 12(23):3703-3714.
doi: 10.1101/gad.12.23.3703
|
[37] |
WANG S, HAN K, PENG J, ZHAO J, JIANG L, LU Y, ZHENG H, LIN L, CHEN J, YAN F. NbALD1 mediates resistance to turnip mosaic virus by regulating the accumulation of salicylic acid and the ethylene pathway in Nicotiana benthamiana. Molecular Plant Pathology, 2019, 20(7):990-1004.
doi: 10.1111/mpp.2019.20.issue-7
|
[38] |
SHAH C P, KHARKAR P S. Inosine 5′-monophosphate dehydrogenase inhibitors as antimicrobial agents: Recent progress and future perspectives. Future Science Medicinal Chemistry, 2015, 7(11):1415-1429.
|
[39] |
SHUKLA D, HUDA K M, BANU M S, GILL S S, TUTEJA R, TUTEJA N. OsACA6, a P-type 2B Ca2+ ATPase functions in cadmium stress tolerance in tobacco by reducing the oxidative stress load. Planta, 2014, 240(4):809-824.
doi: 10.1007/s00425-014-2133-z
|
[40] |
LU Y, SWARTZ J R. Functional properties of flagellin as a stimulator of innate immunity. Scientific Reports, 2016, 6:18379.
doi: 10.1038/srep18379
|
[41] |
FELIX G, DURAN J D, VOLKO S, BOLLER T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal, 1999, 18(3):265-276.
doi: 10.1046/j.1365-313X.1999.00265.x
|
[42] |
LOPEZ M, MIRANDA E, RAMOS C, GARCIA H, NEIRA- CATTILLO A. Activation of early defense signals in seedlings of Nicotiana benthamiana treated with chitin nanoparticles. Plants, 2020, 9(5):607.
doi: 10.3390/plants9050607
|
[43] |
LU D, WU S, GAO X, ZHANG Y, SHAN L, HE P. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(1):496-501.
|
[44] |
TSUDA K, SATO M, STODDARD T, GLAZEBROOK J, KATAGIRI F. Network properties of robust immunity in plants. PLoS Genetics, 2009, 5(12):e1000772.
doi: 10.1371/journal.pgen.1000772
|