[1]Soltis P S. Ancient and recent polyploidy in angiosperms. New Phytologist, 2005, 166: 5-8.
[2]Stebbins G L. Variation and Evolution in Plants. London: Columbia University Press, 1950.
[3]Stebbins G L. Chromosomal evolution in higher plants. Edward Aronld, 1971.
[4]Blance G, Wolfe K H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. The Plant Cell, 2004, 16(7): 1667-1678.
[5]Tian C G, Xiong Y Q, Liu T Y, Sun S H, Chen L B, Chen M S. Evidence of an ancient whole-genome duplication event in rice and other cereals. Acta Genetical Sinica, 2005, 32(5): 519-527.
[6]庄勇, 陈龙正, 杨寅桂, 娄群峰, 陈劲枫. 植物异源多倍体进化中基因表达的变化. 植物学通报, 2006, 23(2): 207-214.
Zhuang Y, Chen L Z, Yang Y G, Lou Q F, Chen J F. Changes in gene expression in evolution of plant allopolyploids. Chinese Bulletin of Botany, 2006, 23(2): 207-214. (in Chinese)
[7]Comai L, Tyagi A P, Winter K, Holmes-Davis R, Reynolds S H, Stevens Y, Byers B. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. The Plant Cell, 2000, 12: 1551-1567.
[8]Lee H S, Chen Z J. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proceedings of the National Academy of Science of the USA, 2001, 98(12): 6753-6758.
[9]Ozkan H, Levy A A, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. The Plant Cell, 2001, 13: 1735-1747.
[10]Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in newly synthesized wheat allopolyploid. Genetics, 2002, 160: 1651-1659.
[11]He P, Friebe B R, Gill B S, Zhou J M. Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Molecular Biology, 2003, 52(2): 401-414.
[12]Han F P, Fedak G, Ouellet T, Liu B. Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome, 2003(46): 716-723.
[13]聂利红, 韩宗福, 姚颖垠, 孙其信, 倪中福. 人工合成六倍体小麦(AABBDD)与亲本种之间基因组与基因区域的序列变异分析. 自然科学进展, 2008, 18 (1): 45-50.
Nie L H, Han Z F, Yao Y Y, Sun Q X, Ni Z F. The sequence variation analysis of genome and gene region between the synthetic hexaploid wheat with parents. Progress in Natural Science, 2008, 18(1): 45-50. (in Chinese)
[14]Hanson R E, Zhao X P, Islam-Faridi M N, Paterson A H, Zwick M S, Crane C F, Mcknight T D, Stelly D M, Price H J. Evolution of interspersed repetitive elements in Gossypium (Malvaceae) . American Journal of Botany, 1998, 85(10): 1364-1368.
[15]Zhao X P, Si Y, Hanson R E, Crane C F, Price H J, Stelly D M, Wendel J F, Paterson A H. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Research, 1998, 8: 479-492.
[16]Song K, Lu P, Tang K, Osborn T C. Rapid genome changes in synthetic polyploids of Brassica and its implications for polyploid evolution. Proceedings of National Academy of Science of the USA, 1995, 92(17): 7719-7723.
[17]Zeng C L, Wang J B, Liu A H, Wu X M. Seed coat microsculpturing changes during seed development in diploid and amphidiploid Brassica species. Annals of Botnay, 2004, 93: 555-566.
[18]刘爱华, 王建波. 序列消除与异源多倍体植物基因组的进化. 武汉植物学研究, 2004, 22(2): 158-162.
Liu A H, Wang J B. Sequence elimination and the genomic evolution of allopolyploid plants. Journal of Wuhan Botanical Research, 2004, 22(2):158-162. (in Chinese)
[19]Chen J F, Luo X D, Qian C T, Jahn M M, Staub J E, Zhuang F Y. Cucumis monosomic alien addition lines: Morphological, cytological, and genotypic analyses. Theoretical and Applied Genetics, 2004, 108: 1343-1348.
[20]Chen L Z, Lou Q F, Zhuang Y, Chen J F, Zhang X Q. Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis × hytivus. Planta, 2007, 225: 603-614.
[21]Chen L Z, Chen J F. Changes of cytosine methylation induced by wide hybridization and allopolyploidy in Cucumis. Genome, 2008, 51(10): 789-799.
[22]Chen Z J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation and plant polyploids. Annual Review of Plant Biology, 2007, 58: 377-406.
[23]陈龙正, 娄群峰, Joseph W, 陈劲枫, 耿红, 罗向东. 甜瓜属人工异源四倍体早期基因组变化的初步研究. 园艺学报, 2005, 32(6): 1105-1107.
Chen L Z, Lou Q F, Joseph W, Chen J F, Geng H, Luo X D. Preliminary studies on early genomic changes of a synthetic allotetraploid in Cucumis. Acta Horticulturae Sinica, 2005, 32(6): 1105-1107. (in Chinese)
[24]Kochert G, Halward T, Branchi W D. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theoretical and Applied Genetics, 1991, 81(5): 565-570.
[25]Gimenes M A, Lopes C R, Valls F M. Genetic relationship among Arachis species based on AFLP. Genetic and Molecular Biology, 2002, 25(3): 349-353.
[26]Gimenes M A, Lopes C R, Galgaro M L. RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae). Euphytica, 2002, 123: 421-429.
[27]任小平, 廖伯寿, 黄家权, 张晓杰, 姜慧芳. 利用SRAP标记分析花生属花生区组种质亲缘关系. 中国油料作物学报, 2009, 31(4): 449-454.
Ren X P, Liao B S, Huang J Q, Zhang X J, Jiang H F. Genomic affinities of Arachis section Arachis revealed by SRAP markers. Chinese Journal of Oil Crop Sciences, 2009, 31(4): 449-454. (in Chinese)
[28]Garcia G M, Tallury S, Kochert G S. Molecular analysis of Arachis interspecific hybrids. Theoretical and Applied Genetics, 2006, 112: 1342-1384.
[29]Collard B C Y, Mackill D J. Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 2009, 27: 86-93.
[30]Xiong F Q, Zhong R C, Han Z Q, Jiang J, He L Q, Zhuang W J, Tang R H. Start codon targeted polymorphism for evaluation of fuctional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Molecular Biology Reporter, 2011, 38: 3487-3494.
[31]熊发前, 唐荣华, 陈忠良, 潘玲华, 庄伟建. 目标起始密码子多态性(SCoT): 一种基于翻译起始位点的目的基因标记新技术. 分子植物育种, 2009, 7(3): 635-638.
Xiong F Q, Tang R H, Chen Z L, Pan L H, Zhuang W J. Start codon target polymorphism (SCoT): A novel gene targeted marker technique based on the translation start codon. Molecular Plant Breeding, 2009, 7(3): 635-638. (in Chinese)
[32]熊发前, 蒋菁, 钟瑞春, 韩柱强, 贺梁琼, 李忠, 庄伟建, 唐荣华. 目标起始密码子多态性(SCoT)分子标记技术在花生属中的应用. 作物学报, 2010, 36(12): 2055-2061.
Xiong F Q, Jiang J, Zhong R C, Han Z Q, He L Q, Li Z, Zhuang W J, Tang R H. Application of SCoT molecular marker in genus Arachis. Acta Agronomica Sinica, 2010, 36(12): 2055-2061. (in Chinese)
[33]陆才瑞, 喻树迅, 于霁雯, 范术丽, 宋美珍, 王武, 马淑娟. 功能型分子标记(ISAP)的开发及评价. 遗传, 2008, 30(9): 1207-1216.
Lu C R, Yu S X, Yu J W, Fan S L, Song M Z, Wang W, Ma S J. Development and appraisement of functional molecular marker: Intron sequence amplified polymorphism (ISAP). Acta Genetical Sinica, 2008, 30(9): 1207-1216. (in Chinese)
[34]Andersen J R, Lübberstedt T. Functional markers in plants. Trends in Plant Science, 2003, 8: 554-560.
[35]陈香玲, 苏伟强, 刘业强, 任惠, 陆玉英. 36份菠萝种质的遗传多样性SCoT分析. 西南农业学报, 2012, 25(2): 625-629.
Chen X L, Su W Q, Liu Y Q, Ren H, Lu Y Y. Analysis on genetic diversity of 36 pineapple collections by SCoT markers, Southwest China Journal of Agricultural Science, 2012, 25(2): 625-629. (in Chinese)
[36]陈虎, 何新华, 罗聪, 高美萍. 龙眼24个品种的SCoT遗传多样性分析. 园艺学报, 2010, 37(10): 1651-1654.
Chen H, He X H, Luo C, Gao M P. Analysis on the genetic diversity of 24 longan (Dimocarpus longan) accessions by SCoT markers. Acta Horticulturae Sinica, 2010, 37(10): 1651-1654. (in Chinese)
[37]唐荣华, 贺梁琼, 高国庆, 庄伟建, 韩柱强, 钟瑞春. 多粒型花生的SSR分子标记. 花生学报, 2004, 33(2): 11-16.
Tang R H, He L Q, Gao G Q, Zhuang W J, Han Z Q, Zhong R C. Simple sequence repeats molecular markers in peanut botanical variety ‘Fastigiata’ in A. hypogaea L.. Journal of Peanut Science, 2004, 33(2): 11-16. (in Chinese)
[38]Zhang L Q, Liu D C, Yan Z H , Lan X J, Zheng Y L, Zhou Y H. Rapid changes of microsatellite flanking sequence in the allopolydization of new synthesized hexaploid wheat. Science in China Series C-life Science, 2004, 47(6): 553-561. |