[1]Hua G, Tsukamoto K, Rasilo M L, Ikezawa H. Molecular cloning of a GPI-anchored aminopeptidase N from Bombyx mori midgut : a putative receptor for Bacillus thuringiensis CryIA toxin. Gene, 1998, 214 (1/2): 177-185.
[2]Yaoi K, Nakanishi K, Kadotani T, Imamura M, Koizumi N, Iwahana H, Sato R. cDNA cloning and expression of Bacillus thuringiensis Cry1Aa toxin binding 120 kDa aminopeptidase N from Bombyx mori. Biochimica et Biophysica Acta, 1999, 1444 (1): 131-137.
[3]Crava C M, Bel Y, Lee S F, Manachini B, Heckel D G, Escriche B. Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hübner) and Bombyx mori (L.): sequences, mapping and expression. Insect Biochemistry and Molecular Biology, 2010, 40(7): 506-515.
[4]Vadlamudi R K, Weber E, Ji I, Ji T H, Bulla Jr. L A. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. Journal of Biological Chemistry, 1995, 270(10): 5490-5494.
[5]Pacheco S, Gómez I, Arenas I, Saab-Rincon G, Rodríguez-Almazán C, Gill S S, Bravo A, Soberón M. Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a "ping pong" binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. The Journal of Biological Chemistry, 2009, 284(47): 32750-32757.
[6]Bravo A, Gómez I, Conde J, Muñoz-Garay C, Sánchez J, Miranda R, Zhuang M, Gill S S, Soberón M. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochimica et Biophysica Acta, 2004, 1667(1): 38-46.
[7]Bravo A, Gill S S, Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 2007, 49(4): 423-435.
[8]Bravo A, Likitvivatanavong S, Gill S S, Soberón M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 2011, 41(7): 423-431.
[9]Rajagopal R, Sivakumar S, Agrawal N, Malhotra P, Bhatnagar R K. Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. The Journal of Biological Chemistry, 2002, 277(49): 46849-46851.
[10]Herrero S, Gechev T, Bakker P L, Moar W J, de Maagd R A. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four aminopeptidase N genes. BMC Genomics, 2005, 6: 96.
[11]Abraham E G, Donnelly-Doman M, Fujioka H, Ghosh A, Moreira L, Jacobs-Lorena M. Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements. Insect Molecular Biology, 2005, 14(3): 271-279.
[12]Zhao A C, Zhao T F, Zhang Y S, Xia Q Y, Lu C, Zhou Z Y, Xiang Z H, Nakagaki M. New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Research, 2010, 19(1): 29-44.
[13]邓党军, 徐汉福, 王 峰, 马三垣, 夏庆友. BmLSP基因启动子驱动DsRed在转基因家蚕中的表达分析. 蚕业科学, 2011, 37(2): 200-205.
Deng D J, Xu H F, Wang F, Ma S Y, Xia Q Y. Expression analysis of DsRed gene driven by promoter of BmLSP gene in transgenic silkworm, Bombyx mori. Science of Sericulture, 2011, 37(2): 200-205. (in Chinese)
[14]胡翠美, 王 菲, 宋 亮, 夏庆友. 家蚕中肠cDNA T7噬菌体展示文库的构建和免疫相关基因的淘选. 蚕业科学, 2011, 37(4): 642-649.
Hu C M, Wang F, Song L, Xia Q Y. Construction of a T7 phage display cDNA library and panning for immune-related genes from midgut of silkworm, Bombyx mori. Science of Sericulture, 2011, 37(4): 642-649. (in Chinese)
[15]马三垣, 徐汉福, 段建平, 赵爱春, 张美蓉, 夏庆友. 家蚕转基因技术中若干因素对转基因效率的影响. 昆虫学报, 2009, 52(6): 595-603.
Ma S Y, Xu H F, Duan J P, Zhao A C, Zhang M R, Xia Q Y. Effect of several factors on the transformation efficiency in the transgenic technology of silkworm, Bombyx mori. Acta Entomologica Sinica, 2009, 52(6): 595-603. (in Chinese)
[16]Wang G H, Xia Q Y, Cheng D J, Duan J, Zhao P, Chen J, Zhu L. Reference genes identified in the silkworm Bombyx mori during metamorphism based on oligonucleotide microarray and confirmed by qRT-PCR. Insect Science, 2008, 15(5): 405-413.
[17]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4): 402-408.
[18]Fernandes M, Xiao H, Lis J T. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor-heat shock element interactions. Nucleic Acids Research, 1994, 22(2): 167-173.
[19]Bray S J, Kafatos F C. Developmental function of Elf-1: an essential transcription factor during embryogenesis in Drosophila. Genes & Development, 1991, 5(9): 1672-1683.
[20]Akiyama Y, Hosoya T, Poole A M, Hotta Y. The gcm-motif: a novel DNA-binding motif conserved in Drosophila and mammals. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(25): 14912-14916.
[21]Lecourtois M, Schweisguth F. The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by notch signaling. Genes & Development, 1995, 9(21): 2598-2608.
[22]Bailey A M, Posakony J W. Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to notch receptor activity. Genes & Development, 1995, 9(21): 2609-2622.
[23]Ekker S C, von Kessler D P, Beachy P A. Differential DNA sequence recognition is a determinant of specificity in homeotic gene action. The EMBO Journal, 1992, 11(11): 4059-4072.
[24]Von Kalm L, Crossgrove K, Von Seggern D, Guild G M, Beckendorf S K. The broad-complex directly controls a tissue-specific response to the steroid hormone ecdysone at the onset of Drosophila metamorphosis. The EMBO Journal, 1994, 13(15): 3505-3516.
[25]Stanojevi? D, Hoey T, Levine M. Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Krueppel in Drosophila. Nature, 1989, 341(6240): 331-335.
[26]Treisman J, Desplan C. The products of the Drosophila gap genes hunchback and Krueppel bind to the hunchback promoters. Nature, 1989, 341(6240): 335-337.
[27]Read D, Manley J L. Alternatively spliced transcripts of the Drosophila tramtrack gene encode zinc finger proteins with distinct DNA binding specificities. The EMBO Journal, 1992, 11(3): 1035-1044.
[28]Brinster R L, Allen J M, Behringer R R, Gelinas R E, Palmiter R D. Introns increase transcriptional efficiency in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(3): 836-840.
[29]Rafiq M, Suen C K, Choudhury N, Joannou C L, White K N, Evans R W. Expression of recombinant human ceruloplasmin-an absolute requirement for splicing signals in the expression cassette. FEBS Letters, 1997, 407(2): 132-136.
[30]Wang H B, Iwanaga M, Kawasaki H. Activation of BMWCP10 promoter and regulation by BR-C Z2 in wing disc of Bombyx mori. Insect Biochemistry and Molecular Biology, 2009, 39(9): 615-623.
[31]Wang H B, Nita M, Iwanaga M, Kawasaki H. BetaFTZ-F1 and broad-complex positively regulate the transcription of the wing cuticle protein gene, BMWCP5, in wing discs of Bombyx mori. Insect Biochemistry and Molecular Biology, 2009, 39(9): 624-633.
[32]Yaoi K, Nakanishi K, Kadotani T, Imamura M, Koizumi N, Iwahana H, Sato R. Bacillus thuringiensis Cry1Aa toxin-binding region of Bombyx mori aminopeptidase N. FEBS Letters, 1999, 463(3): 221-224.
[33]Nakanishi K, Yaoi K, Nagino Y, Hara H, Kitami M, Atsumi S, Miura N, Sato R. Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella - their classification and the factors that determine their binding specificity to Bacillus thuringiensis Cry1A toxin. FEBS Letters, 2002, 519(1/3): 215-220. |