中国农业科学 ›› 2021, Vol. 54 ›› Issue (15): 3331-3342.doi: 10.3864/j.issn.0578-1752.2021.15.016
收稿日期:
2020-06-18
接受日期:
2020-12-22
出版日期:
2021-08-01
发布日期:
2021-08-10
通讯作者:
李齐发
作者简介:
杜星,E-mail: 基金资助:
DU Xing(),ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa(
)
Received:
2020-06-18
Accepted:
2020-12-22
Online:
2021-08-01
Published:
2021-08-10
Contact:
QiFa LI
摘要:
【目的】 前期研究证实linc-NORFA作为母猪繁殖性状候选基因参与调控卵泡闭锁与卵泡颗粒细胞凋亡过程,进一步鉴定二花脸猪linc-NORFA核心启动子并分析其转录调控机制,为解析linc-NORFA介导猪卵泡闭锁的分子机制奠定理论基础并提供新的研究思路。【方法】 采集二花脸猪耳组织样品并提取基因组DNA,利用PCR扩增和测序技术获得二花脸猪linc-NORFA 5′调控区序列;通过构建缺失表达荧光报告载体并利用荧光素酶活性试验鉴定二花脸猪linc-NORFA核心启动子;利用生物信息学分析二花脸猪linc-NORFA核心启动子区序列特征与潜在的转录因子结合位点;构建猪FOXO1真核生物表达载体并进一步采用Western blot、qRT-PCR以及荧光素酶活性试验分析转录因子FOXO1过表达对二花脸猪linc-NORFA转录的影响;利用染色质免疫沉淀(ChIP)技术鉴定转录因子FOXO1与二花脸猪linc-NORFA核心启动子区的结合能力。【结果】 通过克隆测序与序列拼接共获得二花脸猪linc-NORFA 5′调控区序列1 734 bp,其中包含两个潜在的CpG岛;利用荧光素酶活性试验证实linc-NORFA核心启动子位于-988 — -684 bp(转录起始位点作为+1),生物信息学分析表明二花脸猪linc-NORFA核心启动子上包含多个转录因子的结合元件,例如ESR2、FOXO1、E2F1、BRCA1以及NFIC等;另外,ChIP试验还证实在猪卵巢颗粒细胞中FOXO1作为转录因子直接靶向结合在linc-NORFA的核心启动子区;进一步通过试验证实FOXO1过表达可显著下调linc-NORFA核心启动子区活性(P<0.01),同时显著抑制体外培养的猪卵巢颗粒细胞中linc-NORFA的表达(P<0.01)。【结论】 鉴定了二花脸猪linc-NORFA核心启动子区,同时证实FOXO1作为转录因子能够与linc-NORFA核心启动子区特异性结合,进而抑制后者的转录活性与表达。研究结果对探究linc-NORFA在猪卵泡闭锁过程中显著下调的分子机制具有重要意义。
杜星,曾强,刘禄,李琦琦,杨柳,潘增祥,李齐发. 二花脸猪linc-NORFA核心启动子鉴定与转录调控分析[J]. 中国农业科学, 2021, 54(15): 3331-3342.
DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig[J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
表1
本试验所用引物"
引物名称 Primer name | 基因 Gene | 引物序列 Sequence (5′-3′) | 退火温度 Tm (℃) | 大小 Size (bp) | 用途 Usage |
---|---|---|---|---|---|
P1 | linc-NORFA | F: TGGTCCAGGAGGGCAAGC | 62.3 | 637 | PCR扩增 PCR Amplification |
R: CCCCGTTTGCGTGCTTGT | |||||
P2 | linc-NORFA | F: GGGTTTGTGAGTCCAAAGCAAG | 61.9 | 796 | |
R: GGTTTCCACGTCCCTCGGTAT | |||||
P3 | linc-NORFA | F: TTCCAGAGCCTCCAAAGTGA | 58.1 | 730 | |
R: CCTTTGGGAGACCAGCACA | |||||
pNORFA-1F | linc-NORFA | CCAGCATCGCGTCGTCTTT | 61.8 | 280 | 载体构建 Vector Construction |
pNORFA-2F | linc-NORFA | TTCCAGAGCCTCCAAAGTGACT | 58.8 | 613 | |
pNORFA-3F | linc-NORFA | AGGCTGTGCCCAGCGCCTG | 59.6 | 917 | |
pNORFA-4F | linc-NORFA | GGGTTTGTGAGTCCAAAGCAA | 60.2 | 1232 | |
pNORFA-5F | linc-NORFA | GGTCGTCATGGAATATGCTCG | 60.5 | 1771 | |
pNORFA-R | linc-NORFA | CCTCCCAATACGATCTACTTCCTG | - | - | |
NORFA-RT | linc-NORFA | F: ATCCGTTTAGGTCCGTTAGAGC | 60.7 | 117 | qRT-PCR |
R: GGAGGCTGAGTTTGCCACAA | |||||
FOXO1-RT | FOXO1 | F: GGTCAAGAGCGTGCCCTACT | 60.3 | 173 | |
R: TCCCACTCTTGCCTCCCTCT | |||||
GAPDH-RT | GAPDH | F: GGACTCATGACCACGGTCCAT | 60.0 | 220 | |
R: TCAGATCCACAACCGACACGT | |||||
FBE-1 | linc-NORFA | F:ACCTGTAATCCTGCTGGTGAGA | 58.0 | 258 | ChIP |
R:CCACCCACAGGTCTTAATCCA | |||||
FBE-X | linc-NORFA | F:ATATGCTCGGTCCTGTGGC | 60.0 | 328 | |
R:CCACCTGTCAACCATCCCT |
[1] |
VOLLENHOVEN B, HUNT S. Ovarian ageing and the impact on female fertility. F1000Research, 2018, 7:1835.
doi: 10.12688/f1000research |
[2] |
SHEN M, JIANG Y, GUAN Z, CAO Y, LI L, LIU H, SUN S C. Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy. Autophagy, 2017, 13(8):1364-1385.
doi: 10.1080/15548627.2017.1327941 |
[3] |
LEE S, KOPP F, CHANG T C, SATALURI A, CHEN B, SIVAKUMAR S, YU H, XIE Y, MENDELL J T. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell, 2016, 164(1/2):69-80.
doi: 10.1016/j.cell.2015.12.017 |
[4] |
AGIRRE X, MEYDAN C, JIANG Y, GARATE L, DOANE A S, LI Z, VERMA A, PAIVA B, MARTIN-SUBERO J I, ELEMENTO O, MASON C E, PROSPER F, MELNICK A. Long non-coding RNAs discriminate the stages and gene regulatory states of human humoral immune response. Nature Communications, 2019, 10(1):821.
doi: 10.1038/s41467-019-08679-z |
[5] |
STOJIC L, LUN A T L, MASCALCHI P, ERNST C, REDMOND A M, MANGEI J, BARR A R, BOUSGOUNI V, BAKAL C, MARIONI J C, ODOM D T, GERGELY F. A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nature Communications, 2020, 11(1):1851.
doi: 10.1038/s41467-020-14978-7 |
[6] |
QIN W, LI X, XIE L, LI S, LIU J, JIA L, DONG X, REN X, XIAO J, YANG C, ZHOU Y, CHEN Z. A long non-coding RNA, APOA4-AS, regulates APOA4 expression depending on HuR in mice. Nucleic Acids Research, 2016, 44(13):6423-6433.
doi: 10.1093/nar/gkw341 |
[7] |
YOU B H, YOON S H, NAM J W. High-confidence coding and noncoding transcriptome maps. Genome Research, 2017, 27(6):1050-1062.
doi: 10.1101/gr.214288.116 |
[8] | GIL N, ULITSKY I. Regulation of gene expression by cis-acting long non-coding RNAs. Nature Reviews. Genetics, 2020, 21(2):102-117. |
[9] |
NAKAGAWA S, SHIMADA M, YANAKA K, MITO M, ARAI T, TAKAHASHI E, FUJITA Y, FUJIMORI T, STANDAERT L, MARINE J C, HIROSE T. The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development, 2014, 141(23):4618-4627.
doi: 10.1242/dev.110544 |
[10] |
CHEN Y, WANG J, FAN Y, QIN C, XIA X, JOHNSON J, KALLEN A N. Absence of the long noncoding RNA H19 results in aberrant ovarian STAR and progesterone production. Molecular and Cellular Endocrinology, 2019, 490:15-20.
doi: 10.1016/j.mce.2019.03.009 |
[11] |
ZHAO J, XU J, WANG W, ZHAO H, LIU H, LIU X, LIU J, SUN Y, DUNAIF A, DU Y, CHEN Z J. Long non-coding RNA LINC-01572:28 inhibits granulosa cell growth via a decrease in p27 (Kip1) degradation in patients with polycystic ovary syndrome. EBioMedicine, 2018, 36:526-538.
doi: 10.1016/j.ebiom.2018.09.043 |
[12] |
LI Y, LIU Y D, CHEN S L, CHEN X, YE D S, ZHOU X Y, ZHE J, ZHANG J. Down-regulation of long non-coding RNA MALAT1 inhibits granulosa cell proliferation in endometriosis by up-regulating P21 via activation of the ERK/MAPK pathway. Molecular Human Reproduction, 2019, 25(1):17-29.
doi: 10.1093/molehr/gay045 |
[13] |
DU X, LIU L, LI Q, ZHANG L, PAN Z. NORFA, long intergenic noncoding RNA, maintains sow fertility by inhibiting granulosa cell death. Communications Biology, 2020, 3(1):131.
doi: 10.1038/s42003-020-0864-x |
[14] | FORNES O, CASTRO-MONDRAGON J A, KHAN A, VAN DER LEE R, ZHANG X, RICHMOND P A, MODI B P, CORREARD S, GHEORGHE M, BARANASIC D, SANTANA-GARCIA W, TAN G, CHENEBY J, BALLESTER B, PARCY F, SANDELIN A, LENHARD B, WASSERMAN W W, MATHELIER A. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, 2020, 48(D1):D87-D92. |
[15] | DU X, LI Q, YANG L, LIU L, CAO Q. SMAD4 activates Wnt signaling pathway to inhibit granulosa cell apoptosis. Cell Death & Disease, 2020, 11(5):373. |
[16] |
LI Q, DU X, LIU L, PAN Z, CAO S. MiR-126* is a novel functional target of transcription factor SMAD4 in ovarian granulosa cells. Gene, 2019, 711:143953.
doi: 10.1016/j.gene.2019.143953 |
[17] |
SHEN M, LIN F, ZHANG J, TANG Y, CHEN W K, LIU H. Involvement of the up-regulated FoxO1 expression in follicular granulosa cell apoptosis induced by oxidative stress. The Journal of Biological Chemistry, 2012, 287(31):25727-25740.
doi: 10.1074/jbc.M112.349902 |
[18] |
LIN F, LI R, PAN Z X, ZHOU B, YU D B, WANG X G, MA X S, HAN J, SHEN M, LIU H L. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS ONE, 2012, 7(6):e38640.
doi: 10.1371/journal.pone.0038640 |
[19] |
REGAN S L P, KNIGHT P G, YOVICH J L, LEUNG Y, ARFUSO F, DHARMARAJAN A. Granulosa cell apoptosis in the ovarian follicle-A changing view. Frontiers in Endocrinology, 2018, 9:61.
doi: 10.3389/fendo.2018.00061 |
[20] |
WANG Y, YANG C, ELSHEIKH N A H, LI C, YANG F, WANG G, LI L. HO-1 reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress. Aging, 2019, 11(15):5535-5547.
doi: 10.18632/aging.v11i15 |
[21] |
SPEARS N, LOPES F, STEFANSDOTTIR A, ROSSI V, DE FELICI M, ANDERSON R A, KLINGER F G. Ovarian damage from chemotherapy and current approaches to its protection. Human Reproduction Update, 2019, 25(6):673-693.
doi: 10.1093/humupd/dmz027 |
[22] |
CHU Y L, XU Y R, YANG W X, SUN Y. The role of FSH and TGF-beta superfamily in follicle atresia. Aging, 2018, 10(3):305-321.
doi: 10.18632/aging.v10i3 |
[23] |
LI Q, DU X, PAN Z, ZHANG L. The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1. Molecular and Cellular Endocrinology, 2018, 476:84-95.
doi: 10.1016/j.mce.2018.04.012 |
[24] | DU X, PAN Z, LI Q, LIU H. SMAD4 feedback regulates the canonical TGF-beta signaling pathway to control granulosa cell apoptosis. Cell Death & Disease, 2018, 9(2):151. |
[25] | GUO T, ZHANG J, YAO W, DU X, LI Q, HUANG L, MA M, LIU H, PAN Z. CircINHA resists granulosa cell apoptosis by upregulating CTGF as a ceRNA of miR-10a-5p in pig ovarian follicles. Biochimica et Biophysica Acta- Gene Regulatory Mechanisms, 2019, 1862(10):194420. |
[26] |
CABILI M N, TRAPNELL C, GOFF L, KOZIOL M, TAZON-VEGA B, REGEV A, RINN J L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development, 2011, 25(18):1915-1927.
doi: 10.1101/gad.17446611 |
[27] |
QIAN X, ZHAO J, YEUNG P Y, ZHANG Q C, KWOK C K. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends in Biochemical Sciences, 2019, 44(1):33-52.
doi: 10.1016/j.tibs.2018.09.012 |
[28] |
GUTTMAN M, AMIT I, GARBER M, FRENCH C, LIN M F, FELDSER D, HUARTE M, ZUK O, CAREY B W, CASSADY J P, CABILI M N, JAENISCH R, MIKKELSEN T S, JACKS T, HACOHEN N, BERNSTEIN B E, KELLIS M, REGEV A, RINN J L, LANDER E S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235):223-227.
doi: 10.1038/nature07672 |
[29] |
MATTIOLI K, VOLDERS P J, GERHARDINGER C, LEE J C, MAASS P G, MELE M, RINN J L. High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity. Genome Research, 2019, 29(3):344-355.
doi: 10.1101/gr.242222.118 |
[30] |
LIU Y, YANG Y, LI W, AO H, ZHANG Y, ZHOU R, LI K. Effects of melatonin on the synthesis of estradiol and gene expression in pig granulosa cells. Journal of Pineal Research, 2019, 66(2):e12546.
doi: 10.1111/jpi.2019.66.issue-2 |
[31] | LIU J, LI X, YAO Y, LI Q, PAN Z. miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis. Biochimica et Biophysica Acta- Gene Regulatory Mechanisms, 2018, 1861(3):246-257. |
[32] |
CASARINI L, RICCETTI L, DE PASCALI F, GILIOLI L, MARINO M, VECCHI E, MORINI D, NICOLI A, LA SALA G B, SIMONI M. Estrogen modulates specific life and death signals induced by LH and hCG in human primary granulosa cells in vitro. International Journal of Molecular Sciences, 2017, 18(5):926.
doi: 10.3390/ijms18050926 |
[33] |
QUIRK S M, COWAN R G, HARMAN R M. The susceptibility of granulosa cells to apoptosis is influenced by oestradiol and the cell cycle. The Journal of Endocrinology, 2006, 189(3):441-453.
doi: 10.1677/joe.1.06549 |
[34] |
VUONG N H, COOK D P, FORREST L A, CARTER L E, ROBINEAU-CHARETTE P, KOFSKY J M, HODGKINSON K M, VANDERHYDEN B C. Single-cell RNA-sequencing reveals transcriptional dynamics of estrogen-induced dysplasia in the ovarian surface epithelium. PLoS Genetics, 2018, 14(11):e1007788.
doi: 10.1371/journal.pgen.1007788 |
[35] |
WEI C, GUO D, LI Y, ZHANG K, LIANG G, MA Y, LIU J. Profiling analysis of 17beta-estradiol-regulated lncRNAs in mouse thymic epithelial cells. Physiological Genomics, 2018, 50(8):553-562.
doi: 10.1152/physiolgenomics.00098.2017 |
[36] |
LIU X L, WU R Y, SUN X F, CHENG S F, ZHANG R Q, ZHANG T Y, ZHANG X F, ZHAO Y, SHEN W, LI L. Mycotoxin zearalenone exposure impairs genomic stability of swine follicular granulosa cells in vitro. International Journal of Biological Sciences, 2018, 14(3):294-305.
doi: 10.7150/ijbs.23898 |
[37] |
CHOI H, ROH J. Role of Klf4 in the regulation of apoptosis and cell cycle in rat granulosa cells during the periovulatory period. International Journal of Molecular Sciences, 2018, 20(1):87.
doi: 10.3390/ijms20010087 |
[38] |
XU L, SUN H, ZHANG M, JIANG Y, ZHANG C, ZHOU J, DING L, HU Y, YAN G. MicroRNA-145 protects follicular granulosa cells against oxidative stress-induced apoptosis by targeting Kruppel-like factor 4. Molecular and Cellular Endocrinology, 2017, 452:138-147.
doi: 10.1016/j.mce.2017.05.030 |
[39] |
YADAV H, DEVALARAJA S, CHUNG S T, RANE S G. TGF-beta1/Smad3 pathway targets PP2A-AMPK-FoxO1 signaling to regulate hepatic gluconeogenesis. The Journal of Biological Chemistry, 2017, 292(8):3420-3432.
doi: 10.1074/jbc.M116.764910 |
[40] |
QIAO X, RAO P, ZHANG Y, LIU L, PANG M, WANG H, HU M, TIAN X, ZHANG J, ZHAO Y, WANG X M, WANG C, YU H, GUO F, CAO Q, WANG Y, WANG Y M, ZHANG G Y, LEE V W, ALEXANDER S I, ZHENG G, HARRIS D C H. Redirecting TGF-beta signaling through the Beta-catenin/Foxo complex prevents kidney fibrosis. Journal of the American Society of Nephrology, 2018, 29(2):557-570.
doi: 10.1681/ASN.2016121362 |
[41] | LIU F, QIU H, XUE M, ZHANG S, ZHANG X, XU J, CHEN J, YANG Y, XIE J. MSC-secreted TGF-beta regulates lipopolysaccharide- stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Research & Therapy, 2019, 10(1):345. |
[42] |
SEOANE J, LE H V, SHEN L, ANDERSON S A, MASSAGUE J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell, 2004, 117(2):211-223.
doi: 10.1016/S0092-8674(04)00298-3 |
[43] |
PONUGOTI B, XU F, ZHANG C, TIAN C, PACIOS S, GRAVES D T. FOXO1 promotes wound healing through the up-regulation of TGF-beta1 and prevention of oxidative stress. The Journal of Cell Biology, 2013, 203(2):327-343.
doi: 10.1083/jcb.201305074 |
[44] |
KURAKAZU I, AKASAKI Y, HAYASHIDA M, TSUSHIMA H, GOTO N, SUEISHI T, TOYA M, KUWAHARA M, OKAZAKI K, DUFFY T, LOTZ M K, NAKASHIMA Y. FOXO1 transcription factor regulates chondrogenic differentiation through transforming growth factor beta1 signaling. The Journal of Biological Chemistry, 2019, 294(46):17555-17569.
doi: 10.1074/jbc.RA119.009409 |
[1] | 刘玉芳,陈玉林,周祖阳,储明星. miR-221-3p靶向BCL2L11调控小尾寒羊卵泡颗粒细胞凋亡[J]. 中国农业科学, 2022, 55(9): 1868-1876. |
[2] | 阿依木古丽·阿不都热依木,阿尔祖古丽·阿依丁,王家敏,石嘉琛,马芳芳,蔡勇,乔自林. 大豆异黄酮对牦牛卵巢颗粒细胞增殖和凋亡的影响[J]. 中国农业科学, 2022, 55(8): 1667-1675. |
[3] | 张洁,姜长岳,王跃进. 中国野生毛葡萄转录因子VqWRKY6与VqbZIP1互作调控抗白粉病功能分析[J]. 中国农业科学, 2022, 55(23): 4626-4639. |
[4] | 王萍,郑晨飞,王娇,胡璋健,邵淑君,师恺. 番茄转录因子SlNAC29在调控植株衰老中的作用及机理[J]. 中国农业科学, 2021, 54(24): 5266-5276. |
[5] | 孟祥坤,吴赵露,杨雪梅,官道杰,王建军. 二化螟P糖蛋白基因的克隆分析及对杀虫剂的诱导响应[J]. 中国农业科学, 2021, 54(19): 4121-4131. |
[6] | 张鑫,霍孔林,宋星星,张多妮,胡文,胡传活,李珣. GnIH通过p38MAPK信号通路对猪卵巢颗粒细胞自噬与凋亡的影响[J]. 中国农业科学, 2020, 53(9): 1904-1912. |
[7] | 王峰,王秀杰,赵胜男,闫家榕,卜鑫,张颖,刘玉凤,许涛,齐明芳,齐红岩,李天来. 光对园艺植物花青素生物合成的调控作用[J]. 中国农业科学, 2020, 53(23): 4904-4917. |
[8] | 辛晓萍, 王家迎, 张爱玲, 钟玉宜, 何颖婷, 陈赞谋, 张哲, 张豪, 李加琪, 袁晓龙. 转录因子CEBPα和p53在猪卵巢颗粒细胞中 对Kiss1基因表达的调控[J]. 中国农业科学, 2019, 52(9): 1624-1634. |
[9] | 韩立强,王月影,王林枫,朱河水,钟凯,褚贝贝,杨国宇. 奶牛SREBP1蛋白在乳腺上皮细胞的表达定位及对SCD1基因启动子的转录调控[J]. 中国农业科学, 2016, 49(24): 4797-4805. |
[10] | 王亚娴,杨藩,王华岩. Sall4表达调控及其启动子核心调控区的筛选[J]. 中国农业科学, 2016, 49(1): 176-185. |
[11] | 刘辉,李德军,邓治. 植物应答低温胁迫的转录调控网络研究进展[J]. 中国农业科学, 2014, 47(18): 3523-3533. |
[12] | 郑本川, 张锦芳, 李浩杰, 柴靓, 崔成, 蒋俊, 蒲晓斌, 牛应泽, 蒋梁材. 甘蓝型油菜开花调控转录因子CONSTANS的表达分析[J]. 中国农业科学, 2013, 46(12): 2592-2598. |
[13] | 赵永祥, 刘吉英, 潘增祥, 张久峰, 姚勇, 周吉隆, 谢庄, 徐银学, 刘红林, 李齐发. 二花脸猪Smad4基因的克隆与卵巢组织mRNA的表达水平[J]. 中国农业科学, 2012, 45(23): 4883-4890. |
[14] | 韩凤桐,林秀坤,刘娣,吴宁,廖冰 . 牛Sry启动子调控序列的鉴定[J]. 中国农业科学, 2010, 43(14): 2996-3004 . |
[15] | 夏东,赵茹茜,胥清富,徐金先,石子刚,陈杰. 生长抑素基因在猪胃组织中表达发育性变化及品种比较[J]. 中国农业科学, 2003, 36(4): 433-437 . |
|