[1] |
张杰, 董莎萌, 王伟, 赵建华, 陈学伟, 郭惠珊, 何光存, 何祖华, 康振生, 李毅, 彭友良, 王国梁, 周雪平, 王源超, 周俭民. 植物免疫研究与抗病虫绿色防控: 进展、机遇与挑战. 中国科学(生命科学), 2019, 49(11): 1479-1507.
|
|
ZHANG J, DONG S M, WANG W, ZHAO J H, CHEN X W, GUO H S, HE G C, HE Z H, KANG Z S, LI Y, PENG Y L, WANG G L, ZHOU X P, WANG Y C, ZHOU J M. Plant immunity and sustainable control of pests in China: Advances, opportunities and challenges. Scientia Sinica (Vitae), 2019, 49(11): 1479-1507. (in Chinese)
|
[2] |
戴贤甬. 植物中的免疫系统研究进展. 农业科学, 2023, 13(4): 326-336.
|
|
DAI X Y. Research progress of immune system in plants. Hans Journal of Agricultural Sciences, 2023, 13(4): 326-336. (in Chinese)
|
[3] |
ANJALI, KUMAR S, KORRA T, THAKUR R, ARUTSELVAN R, KASHYAP A S, NEHELA Y, CHAPLYGIN V, MINKINA T, KESWANI C. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress, 2023, 8: 100154.
|
[4] |
YANG Y H, ZHAO J, LIU P, XING H J, LI C C, WEI G R, KANG Z S. Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici. PLoS ONE, 2013, 8(11): e81756.
|
[5] |
LIU S F, XIE L Y, SU J X, TIAN B N, FANG A F, YU Y, BI C W, YANG Y H. Integrated metabolo-transcriptomics reveals the defense response of homogentisic acid in wheat against Puccinia striiformis f. sp. tritici. Journal of Agricultural and Food Chemistry, 2022, 70(12): 3719-3729.
|
[6] |
YAN Y, LI X M, CHEN Y, WU T T, DING C H, ZHANG M Q, GUO Y T, WANG C Y, ZHANG J L, ZHANG X B, et al. Phosphorylation of KAT-2B by WKS1/Yr36 redirects the lipid flux to jasmonates to enhance resistance against wheat stripe rust. Journal of Genetics and Genomics, 2023, 50(11): 872-882.
|
[7] |
MASHABELA M D, TUGIZIMANA F, STEENKAMP P A, PIATER L A, DUBERY I A, TEREFE T, MHLONGO M I. Metabolomic evaluation of PGPR defence priming in wheat (Triticum aestivum L.) cultivars infected with Puccinia striiformis f. sp. tritici (stripe rust). Frontiers in Plant Science, 2023, 14: 1103413.
|
[8] |
ZABALA M T, LITTLEJOHN G, JAYARAMAN S, STUDHOLME D, BAILEY T, LAWSON T, TILLICH M, LICHT D, BOLTER B, DELFINO L, TRUMAN W, MANSFIELD J, SMIRNOFF N, GRANT M. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nature Plants, 2015, 1: 15074.
doi: 10.1038/nplants.2015.74
pmid: 27250009
|
[9] |
SONG Y, FENG L, ALYAFEI M A M, JALEEL A, REN M. Function of chloroplasts in plant stress responses. International Journal of Molecular Sciences, 2021, 22(24): 13464.
|
[10] |
LITTLEJOHN G R, BREEN S, SMIRNOFF N, GRANT M. Chloroplast immunity illuminated. New Phytologist, 2021, 229(6): 3088-3107.
doi: 10.1111/nph.17076
pmid: 33206379
|
[11] |
SERRANO I, AUDRAN C, RIVAS S. Chloroplasts at work during plant innate immunity. Journal of Experimental Botany, 2016, 67(13): 3845-3854.
doi: 10.1093/jxb/erw088
pmid: 26994477
|
[12] |
KACHROO P, BURCH-SMITH T M, GRANT M. An emerging role for chloroplasts in disease and defense. Annual Review of Phytopathology, 2021, 59: 423-445.
doi: 10.1146/annurev-phyto-020620-115813
pmid: 34432508
|
[13] |
NOMURA H, KOMORI T, UEMURA S, KANDA Y, SHIMOTANI K, NAKAI K, FURUICHI T, TAKEBAYASHI K, SUGIMOTO T, SANO S, SUWASTIKA I N, FUKUSAKI E, YOSHIOKA H, NAKAHIRA Y, SHIINA T. Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nature Communications, 2012, 3: 926.
|
[14] |
DIXON R A. Natural products and plant disease resistance. Nature, 2001, 411(6839): 843-847.
|
[15] |
XIAO Y M, SAVCHENKO T, BAIDOO E E K, CHEHAB W E, HAYDEN D M, TOLSTIKOV V, CORWIN J A, KLIEBENSTEIN D J, KEASLING J D, DEHESH K. Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress- response genes. Cell, 2012, 149(7): 1525-1535.
|
[16] |
CUI B, PAN Q N, CUI W Q, WANG Y Q, LOAKE V I P, YUAN S G, LIU F Q, LOAKE G J. S-nitrosylation of a receptor-like cytoplasmic kinase regulates plant immunity. Science Advances, 2024, 10: eadk3126.
|
[17] |
XIE Y P, DING Y Q, SHAO X L, YAO C Y, LI J W, LIU J G, DENG X. Pseudomonas syringae senses polyphenols via phosphorelay crosstalk to inhibit virulence. EMBO Reports, 2021, 22(12): e52805.
|
[18] |
LIAO Z H, WANG L, LI C Z, CAO M J, WANG J N, YAO Z L, ZHOU S Y, ZHOU G X, ZHANG D Y, LOU Y G. The lipoxygenase gene OsRCI-1 is involved in the biosynthesis of herbivore-induced JAs and regulates plant defense and growth in rice. Plant, Cell and Environment, 2022, 45(9): 2827-2840.
|
[19] |
都浩, 马斯琦, 熊立仲. 水稻叶片叶绿体蛋白分离及检测. 2018, Bio-101e1010123.
|
|
DU H, MA S Q, XIONG L Z. Isolation and detection of chloroplast protein from rice leaves. 2018, Bio-101e1010123. (in Chinese)
|
[20] |
CHANG Q, LIU J, WANG Q L, HAN L N, LIU J, LI M, HUANG L L, YANG J R, KANG Z S. The effect of Puccinia striiformis f. sp. tritici on the levels of water-soluble carbohydrates and the photosynthetic rate in wheat leaves. Physiological & Molecular Plant Pathology, 2013, 84: 131-137.
|
[27] |
SEYBOLD H, DEMETROWITSCH T J, HASSANI M A, SZYMCZAK S, REIM E, HAUEISEN J, LUBBERS L, RUHLEMANN M, FRANKE A, SCHWARZ K, STUKENBROCK E H. A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nature Communications, 2020, 11: 1910.
doi: 10.1038/s41467-020-15633-x
pmid: 32313046
|
[28] |
MASHABELA M D, TUGIZIMANA F, STEENKAMP P A, PIATER L A, DUBERY I A, MHLONGO M I. Metabolite profiling of susceptible and resistant wheat (Triticum aestivum) cultivars responding to Puccinia striiformis f. sp. tritici infection. BMC Plant Biology, 2023, 23: 293.
|
[29] |
MASHABELA M D, PIATER L A, STEENKAMP P A, DUBERY I A, TUGIZIMANA F, MHLONGO M I. Comparative metabolite profiling of wheat cultivars (Triticum aestivum) reveals signatory markers for resistance and susceptibility to stripe rust and aluminium (Al3+) toxicity. Metabolites, 2022, 12(2): 98.
|
[30] |
陆雯, 潘璐琪, 王雪艳. 水杨酸及茉莉酸介导植物抗病性的研究进展. 贵州农业科学, 2013, 41(10): 40-43.
|
|
LU W, PAN L Q, WANG X Y. Research advances in salicylic acid and jasmonic acid mediated plant resistance. Guizhou Agricultural Sciences, 2013, 41(10): 40-43. (in Chinese)
|
[31] |
YARA A, YAENO T, MONTILLET J L, HASEGAWA M, SEO S, KUSUMI K, IBA K. Enhancement of disease resistance to Magnaporthe grisea in rice by accumulation of hydroxy linoleic acid. Biochemical and Biophysical Research Communications, 2008, 370(2): 344-347.
|
[32] |
TANG B Z, LIU C Y, LI Z Q, ZHANG X X, ZHOU S Q, WANG G L, CHEN X L, LIU W D. Multilayer regulatory landscape during pattern-triggered immunity in rice. Plant Biotechnology Journal, 2021, 19(12): 2629-2645.
doi: 10.1111/pbi.13688
pmid: 34437761
|
[33] |
KACHROO A, KACHROO P. Fatty acid-derived signals in plant defense. Annual Review of Phytopathology, 2009, 47: 153-176.
doi: 10.1146/annurev-phyto-080508-081820
pmid: 19400642
|
[34] |
WAN S W, XIN X F. Regulation and integration of plant jasmonate signaling: A comparative view of monocot and dicot. Journal of Genetics and Genomics, 2022, 49(8): 704-714.
doi: 10.1016/j.jgg.2022.04.002
pmid: 35452856
|
[35] |
GRIFFITHS G. Jasmonates: Biosynthesis, perception and signal transduction. Essays in Biochemistry, 2020, 64(3): 501-512.
doi: 10.1042/EBC20190085
pmid: 32602544
|
[36] |
LI Y H, QIU L N, ZHANG Q, ZHUANSUN X X, LI H F, CHEN X, KRUGMAN T, SUN Q X, XIE C J. Exogenous sodium diethyldithiocarbamate, a jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat. Plant Direct, 2020, 4(4): e00212.
|
[37] |
SINGH U B, MALVIYA D, SINGH S, KUMAR M, SAHU P K, SINGH H V, KUMAR S, ROY M, IMRAN M, RAI J P, SHARMA A K, SAXENA A K. Trichoderma harzianum- and methyl jasmonate- induced resistance to Bipolaris sorokiniana through enhanced phenylpropanoid activities in bread wheat (Triticum aestivum L.). Frontiers in Microbiology, 2019, 10: 1697.
|
[38] |
YARULLINA L G, TROSHINA N B, CHEREPANOVA E A, ZAIKINA E A, MAKSIMOV I V. Salicylic and jasmonic acids in regulation of the proantioxidant state in wheat leaves infected by Septoria nodorum Berk. Prikladnaia Biokhimiia I Mikrobiologiia, 2011, 47(5): 602-608.
|
[26] |
HE F X, WANG C, SUN H L, TIAN S X, ZHAO G S, LIU C, WAN C P, GUO J, HUANG X L, ZHAN G M, YU X M, KANG Z S, GUO J. Simultaneous editing of three homoeologues of TaCIPK14 confers broad-spectrum resistance to stripe rust in wheat. Plant Biotechnology Journal, 2023, 21(2): 354-368.
|
[25] |
WANG N, FAN X, HE M Y, HU Z Y, TANG C L, ZHANG S, LIN D X, GAN P F, WANG J F, HUANG X L, GAO C X, KANG Z S, WANG X J. Transcriptional repression of TaNOX10 by TaWRKY19 compromises ROS generation and enhances wheat susceptibility to stripe rust. The Plant Cell, 2022, 34(5): 1784-1803.
|
[24] |
YAN Y D, LU L L, ZHOU X L, WANG M N, JING J X. The genetic analysis and SSR molecular markers of stripe rust resistance gene in Chinese differential cultivar Suwon11. Journal of Plant Protection, 2009, 36(3): 285-286. (in Chinese)
|
|
严引娣, 卢丽丽, 周新力, 王美南, 井金学. 中国小麦条锈菌鉴别寄主水源11的抗条锈基因分析及其SSR标记. 植物保护学报, 2009, 36(3): 285-286.
|
[23] |
ZHAO J, KANG Z S. Fighting wheat rusts in China: A look back and into the future. Phytopathology Research, 2023, 5(1): 6.
|
[22] |
BOUVET L, HOLDGATE S, JAMES L, THOMAS J, MACKAY I J, COCKRAM J. The evolving battle between yellow rust and wheat: Implications for global food security. Theoretical and Applied Genetics, 2022, 135(3): 741-753.
|
[21] |
WELLINGS C R. Global status of stripe rust: A review of historical and current threats. Euphytica, 2011, 179: 129-141.
|