中国农业科学 ›› 2022, Vol. 55 ›› Issue (9): 1831-1845.doi: 10.3864/j.issn.0578-1752.2022.09.012
林馨颖1(),王鹏杰1,杨如兴2,*(
),郑玉成1,陈潇敏1,张磊2,邵淑贤1,叶乃兴1,*(
)
收稿日期:
2021-09-02
修回日期:
2021-11-01
出版日期:
2022-05-01
发布日期:
2022-05-19
通讯作者:
杨如兴,叶乃兴
作者简介:
林馨颖,E-mail: 基金资助:
LIN XinYing1(),WANG PengJie1,YANG RuXing2,*(
),ZHENG YuCheng1,CHEN XiaoMin1,ZHANG Lei2,SHAO ShuXian1,YE NaiXing1,*(
)
Received:
2021-09-02
Revised:
2021-11-01
Online:
2022-05-01
Published:
2022-05-19
Contact:
RuXing YANG,NaiXing YE
摘要:
【目的】分析茶树黄化变异相关的代谢和转录机制,探究高茶氨酸茶树新品系‘福黄1号’的黄化变异和高茶氨酸形成机理。【方法】以茶树‘福安大白茶’及其黄化突变种质‘福黄1号’为试验材料,利用超微电镜、广泛靶向代谢组学、靶向代谢组学及转录组学联合分析,确定茶树黄化变异相关的色素、代谢物及转录组数据。【结果】超微结构显示,‘福黄1号’的叶绿体类囊体呈现丝状,基粒片层排列散乱不规则,片层间疏松,存在许多异常的囊泡。色素含量测定表明,叶绿素a和叶绿素b含量显著下降,叶绿素a/b比率下降,相关基因SGR表达显著下调,黄化叶片中光捕获叶绿素a/b蛋白(LHC)表达显著下调。类胡萝卜素总含量虽然差异不大,但各组分含量显著变化,玉米黄质为唯一显著增加的组分,其调控基因VDE表达显著上调,其余组分含量均下降。与‘福安大白茶’相比,‘福黄1号’中共鉴定到680个差异表达基因(DEGs)和57个显著变化的代谢物(SCMs)。KEGG富集分析表明,SCMs和DEGs显著富集到氨基酸生物合成、谷胱甘肽代谢以及TCA循环等途径。此外,与碳和氮代谢相关的通路也被激活。通过靶向测定,共鉴定到19种游离氨基酸,新品系‘福黄1号’游离氨基酸含量显著高于‘福安大白茶’,达到97.13 mg∙g-1,其中茶氨酸为66.90 mg∙g-1,占氨基酸含量的68.89%,而精氨酸含量达到8.46 mg∙g-1,是‘福安大白茶’的56.4倍。调控氨基酸合成的GOGAT和GLU的表达量上调1.17倍和3.17倍。【结论】‘福黄1号’的芽叶色泽主要受叶绿素、类胡萝卜素和类黄酮等色素代谢的影响,SGR和4种LHCs的共同作用也可能影响叶绿体的生物合成来调节叶片色泽。‘福黄1号’茶氨酸含量显著高于‘福安大白茶’的原因主要是泛素化相关的蛋白质水解酶表达上调蛋白降解能力加强,叶绿素和其他含氮分子生物合成的减少,以及黄化叶中碳骨架的缺乏,氨基和氮资源被更有效地储存,使得与氨基酸合成相关的氮代谢激活,茶氨酸合成前体物质之一的谷氨酸积累,这可能促使茶氨酸成为黄化叶中显著积累的含氮化合物。
林馨颖,王鹏杰,杨如兴,郑玉成,陈潇敏,张磊,邵淑贤,叶乃兴. 高茶氨酸茶树新品系‘福黄1号’黄化变异机理[J]. 中国农业科学, 2022, 55(9): 1831-1845.
LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1[J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
表1
‘福安大白茶’和‘福黄1号’转录组数据的质量"
样本名称 Sample | 原始序列 Raw read | 过滤序列 Clean read | 过滤碱基 Clean base (G) | 整体测序错误率 Error rate (%) | Q20 (%) | Q30 (%) | GC含量 GC content (%) |
---|---|---|---|---|---|---|---|
GF-1 | 47303628 | 46072126 | 6.91 | 0.03 | 96.65 | 90.46 | 44.83 |
GF-2 | 47291032 | 46122320 | 6.92 | 0.03 | 96.37 | 89.87 | 44.58 |
GF-3 | 57641310 | 56256308 | 8.44 | 0.03 | 96.27 | 89.63 | 44.70 |
YF-1 | 46752324 | 45637674 | 6.85 | 0.03 | 96.47 | 90.07 | 44.41 |
YF-2 | 45390834 | 44391162 | 6.66 | 0.03 | 95.62 | 88.54 | 44.39 |
YF-3 | 46546464 | 45474928 | 6.82 | 0.03 | 96.54 | 90.23 | 44.64 |
合计 Total | 290925592 | 283954518 | 42.6 |
图7
‘福安大白茶’和‘福黄1号’色素合成通路及其相关DEGs的表达分析 A:叶绿素生物合成通路;B:类胡萝卜素生物合成通路;C:类黄酮生物合成通路。红色代表上调代谢物,绿色代表下调代谢物。热图表示所有与通路相关DEGs的表达水平,由3个重复样本计算得出的平均值进行log2转换生成。CHLG:叶绿素a合酶。NOL:叶绿素b还原酶;HCAR:7-羟甲基叶绿素a还原酶;DVR:二乙烯基叶绿素a 8-乙烯基还原酶;POR:原叶绿素还原酶;EARS:谷氨酰tRNA合成酶;SGR:镁脱氢酶;PSY:八氢番茄红素合成酶;PDS:八氢番茄红素脱氢酶;LCYE:ε-番茄红素环化酶;ZEP:玉米黄质环氧酶;VDE:紫黄质脱环氧酶;NCED:9-顺式-环氧类胡萝卜素双加氧酶;CHS:查耳酮合成酶;CHI:查耳酮异构酶;F3H:类黄酮3β-羟化酶;F3′5′H:类黄酮3′, 5′-羟化酶;DFR:二氢黄烷醇4-还原酶;ANS:花青素还原酶。下同"
图8
‘福安大白茶’和‘福黄1号’光合蛋白相关的通路及其相关DEGs的表达分析 A:光合作用-天线蛋白途径;B:内质网中的蛋白质加工途径。GlcI:甘露糖基寡糖葡糖苷酶;GlcII:甘露糖基寡糖α-1, 3-葡萄糖苷酶;Climp63:细胞骨架相关蛋白4;CNX:钙连接蛋白;ERP57:蛋白质二硫键异构酶A3;CRT:钙网蛋白;UGGT:UDP-葡萄糖∶糖蛋白葡萄糖基转移酶;VIP36:凝集素, 甘露糖结合2;ERGL:凝集素, 甘露糖结合1;Sec:调节元件结合蛋白;Ero1:ERO1 α蛋白;PDIs:蛋白质二硫键异构酶;OS9:OS-9蛋白;XTP3B:蛋白质二硫键异构酶A1;TRAP:转位子相关蛋白亚基α;Bap31:B细胞受体相关蛋白31;NEF:热休克蛋白110;DOA1:磷脂酶A-2激活蛋白;Otu1:泛素硫酯酶;LHCA、LHCB:叶绿素a/b结合蛋白;Hsp20、Hsp40、Hsp70、Hsp90:热休克蛋白;sHSF:热休克转录因子;Png1:肽-N4-(N-乙酰基-β-氨基葡萄糖基)天冬酰胺酰胺酶;ERManI:甘露糖基寡糖α-1, 2-甘露糖苷酶;SAR1:GTP结合蛋白;RAD23:紫外线切除修复蛋白;SWP1、WBP1:寡聚糖基转移酶;Ubx、APC3、PCHY1:泛素化介导的蛋白水解酶;UBE3:RING型E3泛素化转移酶;UBP:泛素化特异性蛋白酶"
表2
‘福安大白茶’和‘福黄1号’游离氨基酸含量"
组分 Content | 福安大白茶 Fuan Dabaicha | 福黄1号 Fuhuang 1 | 组分 Content | 福安大白茶 Fuan Dabaicha | 福黄1号 Fuhuang 1 | |
---|---|---|---|---|---|---|
r-氨基丁酸 GABA | 0.14±0.00a | 0.39±0.37a | 缬氨酸 Valine | 0.14±0.00b | 0.26±0.00a | |
丙氨酸 Alanine | 0.47±0.00a | 0.50±0.02a | 异亮氨酸 Isoleucine | 0.16±0.00b | 0.44±0.14a | |
茶氨酸 Theanine | 17.42±0.64b | 66.90±2.69a | 谷氨酸 Glutamate | 2.47±0.15a | 4.27±0.35a | |
脯氨酸 Proline | 0.44±0.00b | 1.36±0.00a | 谷氨酰胺 Glutamine | 0.91±0.89b | 4.12±0.26a | |
赖氨酸 Lysine | 0.20±0.01b | 0.74±0.10a | 精氨酸 Arginine | 0.15±0.00b | 8.46±1.48a | |
亮氨酸 Leucine | 0.15±0.00a | 0.46±0.28a | 丝氨酸 Serine | 1.06±0.06a | 1.94±0.13a | |
天冬氨酸 Aspartate | 0.21±0.41b | 4.35±0.44a | 天冬酰胺 Asparagine | 0.15±0.00b | 1.32±0.12a | |
酪氨酸 Tyrosine | 0.22±0.00a | 0.25±0.02a | 组氨酸 Histidine | 0.07±0.01b | 0.26±0.02a | |
色氨酸 Tryptophan | 0.22±0.01a | 0.26±0.01a | 甘氨酸 Glycine | 0.06±0.01a | 0.09±0.02a | |
苏氨酸 Threonine | 0.19±0.01b | 0.60±0.04a | 总量 Total content | 24.88±0.44b | 97.13±5.42a |
图9
碳、氮代谢相关的通路及其相关DEGs的表达分析 糖酵解途径、三羧酸循环途径、同化硝酸盐还原途径、谷胱甘肽代谢途径及氨基酸合成途径。GPI:葡萄糖-6-磷酸异构酶;ALDO:果糖二磷酸醛缩酶;PGAM:2,3-二磷酸甘油酸依赖性磷酸甘油酸变位酶;PPC:磷酸烯醇式丙酮酸羧激酶;ACLY:三磷酸腺苷柠檬酸合酶;ADH:醇脱氢酶;SDHC:琥珀酸脱氢酶;glyA:丝氨酸羟甲基转移酶;GOGAT:谷氨酸合成酶;GLU:谷氨酰胺合成酶;GAD:谷氨酸脱羧酶;DHAR:磷脂酰胆碱二酰基甘油胆碱磷酸转移酶;PGD:6-磷酸葡萄糖酸脱氢酶;NirA:铁氧还蛋白-亚硝酸盐还原酶;cynT:二氧化碳可逆作用酶"
[1] |
WANG P J, YU J X, JIN S, CHEN S, YUE C, WANG W L, GAO S L, CAO H L, ZHENG Y C, GU M Y, CHEN X J, SUN Y, GUO Y Q, YANG J F, ZHANG X T, YE N X. Genetic basis of high aroma and stress tolerance in the Oolong tea cultivar genome. Horticulture Research, 2021, 8(1): 107. doi: 10.1038/s41438-021-00542-x.
doi: 10.1038/s41438-021-00542-x |
[2] |
PANG D D, LIU Y F, SUN Y N, TIAN Y P, CHEN L B. Menghai Huangye, a novel albino tea germplasm with high theanine content and a high catechin index. Plant Science, 2021, 311(prepublish): 110997. doi: 10.1016/J.PLANTSCI.2021.110997.
doi: 10.1016/J.PLANTSCI.2021.110997 |
[3] |
WANG P J, ZHENG Y C, GUO Y C, LIU B S, JIN S, LIU S Z, ZHAO F, CHEN X J, SUN Y, YANG J F, YE N X. Widely targeted metabolomic and transcriptomic analyses of a novel albino tea mutant of ‘Rougui’. Forests, 2020, 11(2): 229. doi: 10.3390/f11020229.
doi: 10.3390/f11020229 |
[4] |
FENG L, GAO M J, HOU R Y, HU X Y, ZHANG L, WAN X C, WEI S. Determination of quality constituents in the young leaves of albino tea cultivars. Food Chemistry, 2014, 155: 98-104. doi: 10.1016/j.foodchem.2014.01.044.
doi: 10.1016/j.foodchem.2014.01.044 |
[5] |
JIANG X F, ZHAO H, GUO F, SHI X P, YE C, YANG P X, LIU B Y, NI D J. Transcriptomic analysis reveals mechanism of light-sensitive albinism in tea plant Camellia sinensis ‘Huangjinju’. BMC Plant Biology, 2020, 20(1): 216. doi: 10.1186/s12870-020-02425-0.
doi: 10.1186/s12870-020-02425-0 |
[6] |
LI Q, HUANG J N, LIU S Q, LI J, YANG X H, LIU Y S, LIU Z H. Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar. Proteome Science, 2011, 9(1): 44. doi: 10.1186/1477-5956-9-44.
doi: 10.1186/1477-5956-9-44 |
[7] |
LI N N, YANG Y P, YE J H, LU J L, ZHENG X Q, LIANG Y R. Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant. Plant Growth Regulation, 2016, 78(2): 253-262. doi: 10.1007/s10725-015-0090-6.
doi: 10.1007/s10725-015-0090-6 |
[8] |
SONG L B, MA Q P, ZOU Z W, SUN K, YAO Y T, TAO J H, KALERI N A, LI X H. Molecular link between leaf coloration and gene expression of flavonoid and carotenoid biosynthesis in Camellia sinensis cultivar ‘Huangjinya’. Frontiers in Plant Science, 2017, 8: 803. doi: 10.3389/fpls.2017.00803.
doi: 10.3389/fpls.2017.00803 |
[9] |
LI C F, YAO M Z, MA C L, MA J Q, JIN J Q, CHEN L. Differential metabolic profiles during the albescent stages of ‘Anji baicha’ (Camellia sinensis). PLoS ONE, 2017, 10(10): e0139996. doi: 10.1371/journal.pone.0139996.
doi: 10.1371/journal.pone.0139996 |
[10] |
MA Q P, LI H, ZOU Z W, ARKORFUL E, LV Q R, ZHOU Q Q, CHEN X, SUN K, LI X H. Transcriptomic analyses identify albino-associated genes of a novel albino tea germplasm ‘Huabai 1’. Horticulture Research, 2018, 5: 54. doi: 10.1038/s41438-018-0053-y.
doi: 10.1038/s41438-018-0053-y |
[11] |
疏再发, 王琳琳, 娄艳华, 吉庆勇, 邵静娜, 刘瑜, 何卫中. 白化茶树L-茶氨酸累积机理的研究进展. 食品研究与开发, 2020, 41(17): 217-224. doi: 10.12161/j.issn.1005-6521.2020.17.035.
doi: 10.12161/j.issn.1005-6521.2020.17.035 |
SHU Z F, WANG L L, LOU Y H, JI Q Y, SHAO J N, LIU Y, HE W Z. Research progress on accumulation mechanism of L-theanine in albino tea plant. Food Research and Development, 2020, 41(17): 217-224. doi: 10.12161/j.issn.1005-6521.2020.17.035. (in Chinese)
doi: 10.12161/j.issn.1005-6521.2020.17.035 |
|
[12] |
方开星, 姜晓辉, 吴华玲. 茶树茶氨酸的代谢及其育种研究进展. 园艺学报, 2016, 43(9): 1791-1802. doi: 10.16420/j.issn.0513-353x.2016-0162.
doi: 10.16420/j.issn.0513-353x.2016-0162 |
FANG K X, JIANG X H, WU H L. Research progress on theanine metabolism and its content breeding in tea. Acta Horticulturae Sinica, 2016, 43(9): 1791-1802. doi: 10.16420/j.issn.0513-353x.2016-0162. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0162 |
|
[13] |
HAO X Y, ZHANG W F, LIU Y, ZHANG H J, REN H Z, CHEN Y, WANG L, ZENG J M, YANG Y J, WANG X C. Pale green mutant analyses reveal the importance of CsGLKs in chloroplast developmental regulation and their effects on flavonoid biosynthesis in tea plant. Plant Physiology and Biochemistry, 2020, 146(C): 392-402. doi: 10.1016/j.plaphy.2019.11.036.
doi: 10.1016/j.plaphy.2019.11.036 |
[14] |
林馨颖, 王鹏杰, 刘仕章, 郑玉成, 刘宝顺, 陈雪津, 叶乃兴. 茶树黄化种: 黄叶肉桂的类胡萝卜素组分分析. 茶叶学报, 2020, 61(3): 120-126. doi: 10.3969/j.issn.1007-4872.2020.03.004.
doi: 10.3969/j.issn.1007-4872.2020.03.004 |
LIN X Y, WANG P J, LIU S Z, ZHENG Y C, LIU B S, CHEN X J, YE N X. Carotenoids in Huangye Rougui tea plant. Tea Science and Technology, 2020, 61(3): 120-126. doi: 10.3969/j.issn.1007-4872.2020.03.004. (in Chinese)
doi: 10.3969/j.issn.1007-4872.2020.03.004 |
|
[15] |
陈思肜, 赵峰, 王淑燕, 金珊, 周鹏, 危赛明, 叶乃兴. 基于AQC衍生和液质联用的茶叶游离氨基酸分析. 南方农业学报, 2019, 50(10): 2278-2285. doi: 10.3969/j.issn.2095-1191.2019.10.18.
doi: 10.3969/j.issn.2095-1191.2019.10.18 |
CHEN S R, ZHAO F, WANG S Y, JIN S, ZHOU P, WEI S M, YE N X. Analysis of free amino acids in tea based on AQC derivation with liquid chromatography-mass spectrometry. Journal of Southern Agriculture, 2019, 50(10): 2278-2285. doi: 10.3969/j.issn.2095-1191.2019.10.18. (in Chinese)
doi: 10.3969/j.issn.2095-1191.2019.10.18 |
|
[16] |
ZHENG Y C, WANG P J, CHEN X J, YUE C, GUO Y C, YANG J F, SUN Y, YE N X. Integrated transcriptomics and metabolomics provide novel insight into changes in specialized metabolites in an albino tea cultivar (Camellia sinensis (L.) O. Kuntz). Plant Physiology and Biochemistry, 2021, 160: 27-36. doi: 10.1016/j.plaphy.2020.12.029.
doi: 10.1016/j.plaphy.2020.12.029 |
[17] |
LIN X Y, CHEN X J, WANG P J, ZHENG Y C, GUO Y C, HONG Y P, YANG R X, YE N X. Metabolite profiling in albino tea mutant Camellia sinensis ‘Fuyun 6’ using LC-ESI-MS/MS. Trees, 2022, 36(1): 261-272. doi: 10.1007/s00468-021-02203-x.
doi: 10.1007/s00468-021-02203-x |
[18] |
ZHENG Y C, WANG P J, CHEN X J, SUN Y, YUE C, YE N X. Transcriptome and metabolite profiling reveal novel insights into volatile heterosis in the tea plant (Camellia sinensis). Molecules, 2019, 24(18): 3380. doi: 10.3390/molecules24183380.
doi: 10.3390/molecules24183380 |
[19] |
LOVE M I, WOLFGANG H, SIMON A. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8.
doi: 10.1186/s13059-014-0550-8 |
[20] |
YU G C, WANG L G, HAN Y Y, HE Q Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics: a Journal of Integrative Biology, 2012, 16(5): 284-287. doi: 10.1089/omi.2011.0118.
doi: 10.1089/omi.2011.0118 |
[21] |
林馨颖, 王鹏杰, 陈雪津, 郭永春, 谷梦雅, 郑玉成, 叶乃兴. 茶树LOX基因家族的鉴定及其在白茶萎凋过程的表达分析. 茶叶科学, 2021, 41(4): 482-496. doi: 10.13305/j.cnki.jts.2021.04.004.
doi: 10.13305/j.cnki.jts.2021.04.004 |
LIN X Y, WANG P J, CHEN X J, GUO Y C, GU M Y, ZHENG Y C, YE N X. Identification of LOX gene family in Camellia sinensis and expression analysis in the process of white tea withering. Journal of Tea Science, 2021, 41(4): 482-496. doi: 10.13305/j.cnki.jts.2021.04.004. (in Chinese)
doi: 10.13305/j.cnki.jts.2021.04.004 |
|
[22] |
谷梦雅, 王鹏杰, 金珊, 陈思肜, 郑知临, 赵峰, 叶乃兴. 基于转录组分析不同强度红光对茶树苯丙烷类代谢的影响. 应用与环境生物学报, 2020, 27(6): 1636-1644. doi: 10.19675/j.cnki.1006-687x.2020.06047.
doi: 10.19675/j.cnki.1006-687x.2020.06047 |
GU M Y, WANG P J, JIN S, CHEN S R, ZHENG Z L, ZHAO F, YE N X. Effects of different red LED light intensities on phenylpropanoid metabolism of tea plants based on transcriptomics. Chinese Journal of Applied and Environmental Biology, 2020, 27(6): 1636-1644. doi: 10.19675/j.cnki.1006-687x.2020.06047. (in Chinese)
doi: 10.19675/j.cnki.1006-687x.2020.06047 |
|
[23] | 郭效琼, 罗迪, 朱骞, 李伟, 陈丽娟, 李东宣. 水稻白化突变体遗传机理与发掘利用研究进展. 分子植物育种, 2021: 1-19. |
GUO X Q, LUO D, ZHU Q, LI W, CHEN L J, LI D X. Research progresses on genetic mechanism and uilization of rice albino mutants. Molecular Plant Breeding, 2021: 1-19. (in Chinese) | |
[24] |
NOVER L, SCHARF K D. Heat stress proteins and transcription factors. Cellular and Molecular Life Sciences CMLS, 1997, 53(1): 80-103. doi: 10.1007/PL00000583.
doi: 10.1007/PL00000583 |
[25] |
张向娜, 熊立瑰, 温贝贝, 王坤波, 刘仲华, 黄建安, 李娟. 茶树叶色变异研究进展. 植物生理学报, 2020, 56(4): 643-653. doi: 10.13592/j.cnki.ppj.2019.0378.
doi: 10.13592/j.cnki.ppj.2019.0378 |
ZHANG X N, XIONG L G, WEN B B, WANG K B, LIU Z H, HUANG J N, LI J. Advances in leaf color variation of tea plant (Camellia sinensis). Plant Physiology Journal, 2020, 56(4): 643-653. doi: 10.13592/j.cnki.ppj.2019.0378. (in Chinese)
doi: 10.13592/j.cnki.ppj.2019.0378 |
|
[26] |
LI C F, MA J Q, HUANG D J, MA C L, JIN J Q, YAO M Z, CHEN L. Comprehensive dissection of metabolic changes in albino and green tea cultivars. Journal of Agricultural and Food Chemistry, 2018, 66(8): 2040-2048. doi: 10.1021/acs.jafc.7b05623.
doi: 10.1021/acs.jafc.7b05623 |
[27] |
WU Z M, ZHANG X, WANG J L, WAN J M. Leaf chloroplast ultrastructure and photosynthetic properties of a chlorophyll-deficient mutant of rice. Photosynthetica, 2014, 52(2): 217-222. doi: 10.1007/s11099-014-0025-x.
doi: 10.1007/s11099-014-0025-x |
[28] |
LI W X, YANG S B, LU Z G, HE Z C, YE Y L, ZHAO B B, WANG L, JIN B. Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. Horticulture Research, 2018, 5(1): 12. doi: 10.1038/s41438-018-0015-4.
doi: 10.1038/s41438-018-0015-4 |
[29] |
PINCUS D. Regulation of Hsf1 and the heat shock response. Advances in Experimental Medicine and Biology, 2020, 1243: 41-50. doi: 10.1007/978-3-030-40204-4_3.
doi: 10.1007/978-3-030-40204-4_3 |
[30] |
TOONG L J, YI J S, MIN T W, JIH M S. Comparisons of flavonoids and anti-oxidative activities in seed coat, embryonic axis and cotyledon of black soybeans. Elsevier, 2010, 123(4): 1112-1114. doi: 10.1016/j.foodchem.2010.05.070.
doi: 10.1016/j.foodchem.2010.05.070 |
[31] |
IKARASHI N, TODA T, HATAKEYAMA Y, KUSUNOKI Y, KON R, MIZUKAMI N, KANEKO M, OGAWA S, SUGIYAMA K. Anti-hypertensive effects of Acacia polyphenol in spontaneously hypertensive rats. International Journal of Molecular Sciences, 2018, 19(3): 700. doi: 10.3390/ijms19030700.
doi: 10.3390/ijms19030700 |
[32] |
GLICKMAN M H, AARON C. The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiological Reviews, 2002, 82(2): 373-428. doi: 10.1152/physrev.00027.2001.
doi: 10.1152/physrev.00027.2001 |
[33] |
YUAN L, XIONG L G, DENG T T, WU Y, LI J, LIU S Q, HUANG J A, LIU Z H. Comparative profiling of gene expression in Camellia sinensis L. cultivar AnJiBaiCha leaves during periodic albinism. Gene, 2015, 561(1): 23-29. doi: 10.1016/j.gene.2015.01.007.
doi: 10.1016/j.gene.2015.01.007 |
[34] |
SATOU M, ENOKI H, OIKAWA A, OHTA D, SAITO K, HACHIYA T, SAKAKIBARA H, KUSANO M, FUKUSHIMA A, SAITO K, KOBAYASHI M, NAGATA N, MYOUGA F, SHINOZAKI K, MOTOHASHI R. Integrated analysis of transcriptome and metabolome of Arabidopsis albino or pale green mutants with disrupted nuclear-encoded chloroplast proteins. Plant Molecular Biology, 2014, 85(4/5): 411-428. doi: 10.1007/s11103-014-0194-9.
doi: 10.1007/s11103-014-0194-9 |
[35] |
SAHINER N, SUNER S S, SAHINER M, SILAN C. Nitrogen and sulfur doped carbon dots from amino acids for potential biomedical applications. Journal of Fluorescence, 2019, 29(5): 1191-1200. doi: 10.1007/s10895-019-02431-y.
doi: 10.1007/s10895-019-02431-y |
[36] |
RUAN J, HAERDT ER, GERENDAS J. Impact of nitrogen supply on carbon/nitrogen allocation: a case study on amino acids and catechins in green tea[Camellia sinensis (L.) O. Kuntze] plants. Plant Biology, 2010, 12(5): 724-734. doi: 10.1111/j.1438-8677.2009.00288.x.
doi: 10.1111/j.1438-8677.2009.00288.x. |
[1] | 唐玉林, 张博, 任曼, 张瑞雪, 秦俊杰, 朱浩, 郭延生. UPLC-MS/MS代谢组学评价归芪益母口服液对产后奶牛瘤胃的调节作用[J]. 中国农业科学, 2023, 56(2): 368-378. |
[2] | 李青林,张文涛,徐慧,孙京京. 低磷胁迫下黄瓜木质部与韧皮部汁液的代谢物变化[J]. 中国农业科学, 2022, 55(8): 1617-1629. |
[3] | 范延艮,王域,刘富浩,赵秀秀,向勤锃,张丽霞. 茶树CsHIPP26.1互作蛋白的筛选与验证[J]. 中国农业科学, 2022, 55(8): 1630-1641. |
[4] | 谢意通,张飞,石洁,冯莉,姜丽. 外源蔗糖对紫背天葵采后品质及叶绿体的影响[J]. 中国农业科学, 2022, 55(8): 1642-1656. |
[5] | 余琦隆,韩莹琰,郝敬虹,秦晓晓,刘超杰,范双喜. 外源亚精胺对高温胁迫下生菜氮代谢的影响[J]. 中国农业科学, 2022, 55(7): 1399-1410. |
[6] | 吕馨宁,王玥,贾润普,王胜男,姚玉新. 不同温度下褪黑素处理对‘阳光玫瑰'葡萄采后品质的影响[J]. 中国农业科学, 2022, 55(7): 1411-1422. |
[7] | 宋松泉,刘军,唐翠芳,程红焱,王伟青,张琪,张文虎,高家东. 种子耐脱水性的生理及分子机制研究进展[J]. 中国农业科学, 2022, 55(6): 1047-1063. |
[8] | 闫乐乐,卜璐璐,牛良,曾文芳,鲁振华,崔国朝,苗玉乐,潘磊,王志强. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响[J]. 中国农业科学, 2022, 55(6): 1149-1158. |
[9] | 彭佳堃, 戴伟东, 颜涌泉, 张悦, 陈丹, 董明花, 吕美玲, 林智. 基于代谢组学的‘永春佛手’乌龙茶化学成分解析[J]. 中国农业科学, 2022, 55(4): 769-784. |
[10] | 谢伶俐,韦丁一,章子爽,徐劲松,张学昆,许本波. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系[J]. 中国农业科学, 2022, 55(24): 4793-4807. |
[11] | 蒋琪琪,许建建,苏越,张琦,曹鹏,宋晨虎,李中安,宋震. 柑橘黄化花叶病毒侵染性克隆构建及应用[J]. 中国农业科学, 2022, 55(24): 4840-4850. |
[12] | 由玉婉,张雨,孙嘉毅,张蔚. ‘月月粉’月季NAC家族全基因组鉴定及皮刺发育相关成员的筛选[J]. 中国农业科学, 2022, 55(24): 4895-4911. |
[13] | 宋江涛,谌丹丹,公旭晨,商祥明,李春龙,蔡永喜,岳建平,王帅玲,张卜芬,谢宗周,刘继红. 人工疏果对‘爱媛28’橘橙果实糖酸含量及代谢基因表达的影响[J]. 中国农业科学, 2022, 55(23): 4688-4701. |
[14] | 张洁,姜长岳,王跃进. 中国野生毛葡萄转录因子VqWRKY6与VqbZIP1互作调控抗白粉病功能分析[J]. 中国农业科学, 2022, 55(23): 4626-4639. |
[15] | 王娟,陈皓宁,石大川,于天一,闫彩霞,孙全喜,苑翠玲,赵小波,牟艺菲,王奇,李春娟,单世华. 花生高亲和硝酸盐转运蛋白基因AhNRT2.7a响应低氮胁迫的功能研究[J]. 中国农业科学, 2022, 55(22): 4356-4372. |
|