中国农业科学 ›› 2021, Vol. 54 ›› Issue (5): 887-900.doi: 10.3864/j.issn.0578-1752.2021.05.002
李佳佳1(),洪慧龙2(
),万明月1(
),储丽1(
),赵敬会1,汪明华1,徐志鹏1,张阴1,黄志平3,张文明1(
),王晓波1(
),邱丽娟2(
)
收稿日期:
2020-07-28
接受日期:
2020-09-17
出版日期:
2021-03-01
发布日期:
2021-03-09
通讯作者:
张文明,王晓波,邱丽娟
作者简介:
李佳佳,E-mail:基金资助:
JiaJia LI1(),HuiLong HONG2(
),MingYue WAN1(
),Li CHU1(
),JingHui ZHAO1,MingHua WANG1,ZhiPeng XU1,Yin ZHANG1,ZhiPing HUANG3,WenMing ZHANG1(
),XiaoBo WANG1(
),LiJuan QIU2(
)
Received:
2020-07-28
Accepted:
2020-09-17
Online:
2021-03-01
Published:
2021-03-09
Contact:
WenMing ZHANG,XiaoBo WANG,LiJuan QIU
摘要:
【目的】大豆茎秆化学组分(纤维素、半纤维素、木质素和粗纤维等)与其茎秆抗倒伏能力密切相关,但由于目前大豆茎秆化学组分检测多采用传统的化学分析技术,测定过程操作复杂、耗时耗力、成本昂贵且易造成环境污染,不适合大规模育种应用,因此,通过构建一套低成本、快速、科学、无污染的大豆茎秆化学组分检测方法,为大豆种质资源茎秆组分分布规律及其与大豆生长习性和倒伏性关系的研究提供方法基础。【方法】通过建立一套基于近红外光谱检测技术的大豆茎秆化学组分检测模型,并利用该模型对大豆种质资源茎秆中的中性洗涤纤维(neutral detergent fiber,NDF)、酸性洗涤纤维(acid detergent fiber,ADF)和粗纤维(crude fiber,CF)等化学组分进行检测分析,通过方差分析、多重比较和小提琴图分析,明确大豆茎秆CF含量与其生长习性及抗倒伏性之间的内在关系。【结果】基于构建的大豆茎秆化学组分近红外光谱快速检测模型对茎秆NDF、ADF和CF组分检测数值的校正相关系数(RC)均在0.90以上。利用16份模型外大豆茎秆样本对模型的有效性进行验证发现,常规化学检测与该模型检测结果之间无显著性差异(P > 0.05)。利用该模型对2017年和2018年种植的393份大豆茎秆CF含量及其生长习性之间的关系进行分析,结果表明,大豆茎秆CF含量符合正态分布规律,在CF含量50.00%以上的材料中,2年数据均表现出直立型(91.67%和86.14%)显著高于蔓生型(8.33%和13.86%),表明大豆茎秆CF含量与其生长习性呈极显著正相关(P < 0.01)。【结论】构建的近红外光谱模型具有低成本、快速高效、无污染的特点。此外,茎秆中CF含量高的大豆品种植株具有更强的抗弯曲度,可作为大豆抗倒伏育种亲本筛选的重要指标。
李佳佳,洪慧龙,万明月,储丽,赵敬会,汪明华,徐志鹏,张阴,黄志平,张文明,王晓波,邱丽娟. 基于近红外光谱的大豆茎秆化学组分含量检测模型构建与应用[J]. 中国农业科学, 2021, 54(5): 887-900.
JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy[J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
表2
常规法测定值和近红外模型预测值结果比较"
序号 No. | 测定值(常规方法) Value (Conventional) (%) | 预测值 Predicted value (%) | 常规测定值与预测值差异 Difference of value | ||||||
---|---|---|---|---|---|---|---|---|---|
ADF | NDF | CF | ADF | NDF | CF | ADF | NDF | CF | |
1 | 35.27 | 62.22 | 43.42 | 36.99 | 59.35 | 43.91 | -1.72 | 2.87 | -0.50 |
2 | 34.45 | 59.28 | 42.00 | 36.08 | 59.32 | 43.33 | -1.63 | -0.04 | -1.34 |
3 | 39.75 | 61.47 | 47.68 | 40.20 | 62.25 | 48.03 | -0.45 | -0.78 | -0.35 |
4 | 42.97 | 63.45 | 49.03 | 42.66 | 65.21 | 49.73 | 0.31 | -1.76 | -0.70 |
5 | 41.56 | 64.47 | 49.47 | 43.07 | 64.96 | 50.14 | -1.51 | -0.49 | -0.67 |
6 | 41.10 | 59.06 | 45.97 | 42.80 | 60.32 | 47.47 | -1.70 | -1.26 | -1.51 |
7 | 42.51 | 61.30 | 45.92 | 40.94 | 61.68 | 44.90 | 1.58 | -0.38 | 1.02 |
8 | 30.27 | 51.91 | 36.98 | 31.80 | 51.00 | 37.12 | -1.54 | 0.91 | -0.14 |
9 | 47.70 | 71.70 | 54.58 | 45.87 | 71.45 | 53.81 | 1.83 | 0.24 | 0.77 |
10 | 40.82 | 66.99 | 48.17 | 41.85 | 66.06 | 48.85 | -1.03 | 0.94 | -0.68 |
11 | 39.80 | 67.31 | 50.49 | 40.70 | 64.82 | 50.10 | -0.90 | 2.50 | 0.38 |
12 | 35.99 | 62.31 | 44.44 | 37.89 | 62.42 | 46.08 | -1.90 | -0.11 | -1.64 |
13 | 43.47 | 64.96 | 48.86 | 42.14 | 64.55 | 48.02 | 1.32 | 0.41 | 0.84 |
14 | 37.53 | 62.68 | 44.71 | 37.84 | 61.61 | 44.37 | -0.31 | 1.07 | 0.34 |
15 | 42.25 | 68.34 | 48.15 | 42.62 | 68.30 | 49.84 | -0.37 | 0.04 | -1.69 |
16 | 41.19 | 69.23 | 49.84 | 41.81 | 68.95 | 49.79 | -0.62 | 0.29 | 0.05 |
表4
393份大豆茎秆粗纤维含量检测分析"
项目 Items | 年份 Year | ||
---|---|---|---|
2017 | 2018 | ||
大豆品种数量(份) Number of soybean varieties | 1664 | 1335 | |
打磨秸秆数(份) Number of grinding stem | 745 | 639 | |
2年共有秸秆数(份) Total number of stems in two years | 393 | 393 | |
粗纤维含量 Crude fiber contents (%) | 最大值Max | 57.39 | 58.63 |
最小值Min | 27.64 | 37.39 | |
均值±标准差Mean±Sd | 47.60±3.53 | 50.30±3.60 | |
变异系数CV (%) | 7.42 | 7.16 |
表5
大豆茎秆粗纤维含量与生长习性分相关性析"
年份Year | 类型 Types | 数量 Number | CF含量均值±标准差 Crude fiber contents Mean±Sd (%) | 95%置信区间 95% Confidence interval | 极小值 Min | 极大值 Max | F值 F value | P值 P value | |
---|---|---|---|---|---|---|---|---|---|
2017 | 直立型 Erect type | 335 (85.24%) | 47.96±3.35A | 47.60 | 48.32 | 37.66 | 57.39 | 25.77 | 0.000 |
蔓生型 Sprawl type | 58 (14.76%) | 45.49±3.85B | 44.48 | 46.50 | 27.64 | 53.02 | |||
总数Total | 393 | 47.60±3.53 | 47.25 | 47.95 | 27.64 | 57.39 | |||
2018 | 直立型 Erect type | 312 (79.39%) | 50.65±3.56A | 50.25 | 51.05 | 37.39 | 58.63 | 14.64 | 0.000 |
蔓生型 Sprawl type | 81 (20.61%) | 48.96±3.45B | 48.20 | 49.72 | 39.96 | 58.35 | |||
总数Total | 393 | 50.30±3.60 | 49.94 | 50.66 | 37.39 | 58.63 |
[1] | 范冬梅, 杨振, 马占洲, 曾庆力, 杜翔宇, 蒋洪蔚, 刘春燕, 韩冬伟, 栾怀海, 裴宇峰, 陈庆山, 胡国华. 多环境条件下大豆倒伏性相关形态性状的QTL分析. 中国农业科学, 2012,45(15):3029-3039. |
FAN D M, YANG Z, MA Z Z, ZENG Q L, DU X Y, JIANG H W, LIU C Y, HAN D W, LUAN H H, PEI Y F, CHEN Q S, HU G H. QTL analysis of lodging-related morphological traits of soybean under two eco-environments. Scientia Agricultura Sinica, 2012,45(15):3029-3039. (in Chinese) | |
[2] | 程颖颖, 赵晋铭, 盖钧镒, 邢邯. 大豆秸秆粗纤维含量的测定及摘荚对其饲用品质的影响. 大豆科学, 2008,27(5):773-776. |
CHENG Y Y, ZHAO J M, GAI J Y, XING H. Testing method for crude fiber content of soybean straw and effect of picking-pod on its feeding quality. Soybean Sciences, 2008,27(5):773-776. (in Chinese) | |
[3] | 徐忠, 姜兆华, 汪群慧. 氨预处理对大豆秸秆纤维素酶解产糖影响的研究. 高校化学工程学报, 2004,18(6):773-776. |
XU Z, JIANG Z H, WANG Q H. Effect of ammonia pretreatment on cellulose hydrolysis of soybean straw. Journal of Chemical Engineering of Chinese Universities, 2004,18(6):773-776. (in Chinese) | |
[4] | 张建, 陈金城, 唐章林, 王瑞. 油菜茎秆理化性质与倒伏关系的研究. 西南农业大学学报(自然科学版), 2006,28(5):763-765. |
ZHANG J, CHEN J C, TANG Z L, WANG R. Study on the physico-chemical properties of stem as related to lodging in rape. Journal of Southwest Agricultural University (Natural Science Edition), 2006,28(5):763-765. (in Chinese) | |
[5] | 刘唐兴, 官春云, 肖君泽, 梁勇, 雷冬阳, 王永兴. 甘蓝型油菜主茎理化特性与倒伏的关系及抗倒性评价. 河南农业科学, 2007,12:40-42, 54. |
LIU T X, GUAN C Y, XIAO J Z, LIANG Y, LEI D Y, WANG Y X. Relation between physico-chemical properties of stem and lodging and evaluation of lodging resiistance in rapeseed (Brassica napus L.). Henan Agricultural Sciences, 2007,12:40-42, 54. (in Chinese) | |
[6] | 陈桂华, 邓化冰, 张桂莲, 唐丈帮, 黄璜. 水稻茎秆性状与抗倒性的关系及配合力分析. 中国农业科学, 2016,49(3):407-417. |
CHEN G H, DENG H B, ZHANG G L, TANG Z B, HUANG H. The correlation of stem characters and lodging resistance and combining ability analysis in rice. Scientia Agricultura Sinica, 2016,49(3):407-417. (in Chinese) | |
[7] | 薛军. 玉米冠层光分布对茎秆抗倒伏性能的影响[D]. 石河子: 石河子大学, 2016. |
XUE J. Effect of light distribution within the canopy on maize (Zea mays L.) stalk lodging resistance charactistic[D]. Shihezi: Shihezi University, 2016. (in Chinese) | |
[8] | 汪清焰. 水稻茎秆成分与其力学性能关系的研究[D]. 合肥: 中国科学技术大学, 2019. |
WANG Q Y. Study on the relationship between components and mechanical properties of rice stem[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese) | |
[9] | 陈晓光, 史春余, 尹燕枰, 王振林, 石玉华, 彭佃亮, 倪英丽, 蔡铁. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011,37(9):1616-1622. |
CHEN X G, SHI C Y, YIN Y P, WANG Z L, SHI Y H, PENG D L, NI Y L, CAI T. Relationship between lignin metabolism and lodging resistance in wheat. Acta Agronomica Sinica, 2011,37(9):1616-1622. (in Chinese) | |
[10] | 刘唐兴, 官春云. 油菜倒伏指数和茎秆生化成分及农艺性状的灰色关联分析. 中国油料作物学报, 2008,30(2):152-156. |
LIU T X, GUAN C Y. Grey relational analysis between lodging index and biochemistry components of stem, agronomic characteristics in rapeseed (Brassica napus L.). Chinese Journal of Oil Crops, 2008,30(2):152-156. (in Chinese) | |
[11] | MARTIN S A, DARRAH L L, HIBBARD B E. Divergent selection for rind penetrometer resistance and its effects on European corn borer damage and stalk traits in corn. Crop Science, 2004,44:711-717. |
[12] | CHEN Y, CHEN J, ZHANG Y, ZHOU D. Effect of harvest date on shearing force of maize stems. Livestock Science, 2007,111(1/2):33-44. |
[13] | 邹俊林. 套作大豆苗期茎秆抗倒特征及其与木质素合成的关系研究[D]. 雅安: 四川农业大学, 2015. |
ZOU J L. Characteristics of stem lodging resistance of relay strip intercropping soybean and its relationship with lignin synthesis at seedling stage[D]. Yaan: Sichun Agricultural University, 2015. (in Chinese) | |
[14] | 程颖颖. 大豆秸秆饲用品质性状的遗传研究[D]. 南京: 南京农业大学, 2008. |
CHENG Y Y. Genetic research of feeding quality traits in soybean straw[D]. Nanjing: Nanjing Agricultural University, 2008. (in Chinese) | |
[15] |
PRASAD K, CLAUS F. Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover. Bioresource Technology, 2010,101(9):3175-3181.
doi: 10.1016/j.biortech.2009.12.008 pmid: 20056415 |
[16] | ELVIRA L, SALVADOR Z, ANGEL G. Dietary transfatty acids in early life: A review. Early Human Development, 2001,65:31-41. |
[17] |
CHOUINARD P Y, GIRARD V, BRISSON G J. Fatty acid profile and physical properties of milk fat from cows fed calcium salts of fatty acids with varying unsaturation. Journal of Dairy Science, 1998,81(2):471-481.
pmid: 9532502 |
[18] | 王立琦. 基于近红外光谱分析的大豆质量检测方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2011. |
WANG L Q. Research on detecting methods for soybean oil quality based on near-infrared spectrum analysis[D]. Harbin: Harbin University of Science and Technology, 2011. (in Chinese) | |
[19] | 李玉, 刘勋, 李加纳, 殷家明, 徐新福. 甘蓝型油菜粒色近红外光谱分析模型构建. 中国油料作物学报, 2012,34(5):533-536. |
LI Y, LIU X, LI J N, YIN J M, XU X F. Construction of near-infrared reflectance spectroscopy model for seed color of rapeseed. Chinese Journal of Oil Crop Sciences, 2012,34(5):533-536. (in Chinese) | |
[20] | 孔庆明. 大豆秸秆成分近红外光谱分析快速检测方法研究[D]. 哈尔滨: 东北农业大学, 2015. |
KONG Q M. Study on near infrared spectrum rapid detection method of crop straw component[D]. Harbin: Northeast Agricultural University, 2015. (in Chinese) | |
[21] | LIU L, YE X P, WOMAC A R, SOKHANSAN S. Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohydrate Polymers, 2010,81(4):820-829. |
[22] | SCHWAB D G, YU J M, TESSO T, DOWELL F, WANG D H. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques-A mini-review. Applied Energy, 2013,104:801-809. |
[23] | 赵峰, 林河通, 杨江帆, 叶乃兴, 俞金朋. 基于近红外光谱的武夷岩茶品质成分在线检测. 农业工程学报, 2014,30(2):269-277. |
ZHAO F, LIN H T, YANG J F, YE N X, YU J P. Online quantitative determination of wuyi rock tea quality compounds by near infrared spectroscopy. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(2):269-277. (in Chinese) | |
[24] | XU F, WANG D H. Rapid determination of sugar content in corn stover hydrolysates using near infrared spectroscopy. Bioresource Technology, 2013,4(2):293-298. (in Chinese) |
[25] | 胡枫竹. 基于近红外的氨/碱化玉米秸秆成分快速检测方法研究[D]. 哈尔滨:东北农业大学, 2018. |
HU F Z. Study on rapid detection of ammonia/alkali corn stalk composition based on near infrared technology[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese) | |
[26] | 王翠秀, 曹见飞, 顾振飞, 徐明雪, 吴泉源. 基于近红外光谱大豆蛋白质、脂肪快速无损检测模型的优化构建. 大豆科学, 2019,38(6):968-976. |
WANG C X, CAO J F, GU Z F, XU M X, WU Q Y. Rapid nondestructive test of soybean protein and fat by near infrared spectroscopy combined with different model methods. Soybean Science, 2019,38(6):968-976. (in Chinese) | |
[27] | 纪楠. 大豆秸秆木质素和纤维素含量与近红外光谱相关性模型研究[D]. 哈尔滨:东北农业大学, 2016. |
JI N. Correlation model research in cellulose and lignin of soybean straw based on near infrared spectroscopy[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese) | |
[28] | 王建波. 大豆秸秆纤维素和半纤维素含量近红外检测模型研究与建立[D]. 哈尔滨:东北农业大学, 2016. |
WANG J B. The research and the establishment of near infrared detection model of soybean straw cellulose and hemicellulose content[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese) | |
[29] | 邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006,5(5):59. |
QIU L J, CHANG R Z. Descriptors and Data Standard for Soybean (Glycine spp.). Beijing: China Agriculture Press, 2006,5(5):59. (in Chinese) | |
[30] | 饲料中中性洗涤纤维(NDF)的测定. GB/T20806-2006, 北京: 中国标准出版社, 2007. |
Determination of neutral detergent fiber (NDF) in feed. GB/T20806- 2006, Beijing: Standards Press of China, 2007. (in Chinese) | |
[31] | 饲料中酸性洗涤木质素(ADL)的测定. GB/T20805-2006, 北京: 中国标准出版社, 2007. |
Determination of acid washing lignin (ADL) in feed. GB/T20805- 2006, Beijing: Standards Press of China, 2007. (in Chinese) | |
[32] | 饲料中粗纤维(CF)的含量测定过滤法. GB/T6434-2006, 北京: 中国标准出版社, 2006. |
Determination of crude fiber content in feed-filtration method. GB/T6434-2006, Beijing: Standards Press of China, 2006. (in Chinese) | |
[33] | 王晶晶. 基于近红外光谱的大米水分及蛋白质含量检测方法研究[D]. 哈尔滨:东北农业大学, 2017. |
WANG J J. The research of moisture and protein content of the detection method in rice based on near infrared spectroscopy[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese) | |
[34] | BAI T C, WANG T, CHEN Y Q, MERCATORIS B. Comparison of near-infrared spectrum pretreatment methods for Jujube leaf moisture content detection in the sand and dust area of southern Xinjiang. Spectroscopy and Spectral Analysis, 2019,39:1323-1328. |
[35] |
奚如春, 钟燕梅, 邓小梅, 陈晓阳, 莫宝盈, 易立飒. 基于近红外光谱的油茶种子含油量定标模型构建. 林业科学, 2013(4):1-6.
doi: 10.11707/j.1001-7488.20130401 |
XI R C, ZHONG X M, DENG X M, CHEN X Y, MO B Y, YI L S. Models for determining oil contents in Camellia oleifera seeds by using near infrared spectroscopy. Scientia Silvae Sinicae, 2013(4):1-6. (in Chinese)
doi: 10.11707/j.1001-7488.20130401 |
|
[36] | 郝勇. 近红外光谱微量分析方法研究[D]. 天津: 南开大学, 2009. |
HAO Y. Microanalysis methods by near infrared spectroscopy[D]. Tianjin: Nankai University, 2009. (in Chinese) | |
[37] | 王勇生, 李洁, 王博, 张宇婷, 耿俊林. 基于近红外光谱扫描技术对高粱中粗脂肪、粗纤维、粗灰分含量的测定方法研究. 中国粮油学报, 2020,35(3):1-5. |
WANG Y S, LI J, WANG B, ZAHNG Y T, GENG J L. Determination of crude fat, crude fiber and crude ash in sorghum based on near infrared spectroscopy. Journal of the Chinese Cereals and Oils Association, 2020,35(3):1-5. (in Chinese) | |
[38] | 张月玲. 绿茶品质相关成分的近红外定标模型的初步建立[D]. 杭州: 浙江大学, 2006. |
ZHANG Y L. Preliminary construction of NIR calibration model for green tea qualities[D]. Hangzhou: Zhejiang University, 2006. (in Chinese) | |
[39] | ASEKOVA S, HAN S I, CHOI H J, PARK S J, SHI D H, KWON C H, SHANNON J G, LEE J D. Determination of forage quality by near-infrared reflectance spectroscopy in soybean. Turkish Journal of Agriculture & Forestry, 2016,40:45-52. |
[40] | 宋平. 农作物秸秆开发利用研究进展. 现代牧业, 2018,2:26-30. |
SONG P. Research progress of crop straw development and utilization. Modern Animal Husbandry, 2018,2:26-30. (in Chinese) |
[1] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[2] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[3] | 郭世博,张方亮,张镇涛,周丽涛,赵锦,杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J]. 中国农业科学, 2022, 55(9): 1763-1780. |
[4] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[5] | 阿依木古丽·阿不都热依木,阿尔祖古丽·阿依丁,王家敏,石嘉琛,马芳芳,蔡勇,乔自林. 大豆异黄酮对牦牛卵巢颗粒细胞增殖和凋亡的影响[J]. 中国农业科学, 2022, 55(8): 1667-1675. |
[6] | 王绿阳,崔雷鸿,冯江银,洪秋霞,游美敬,保浩宇,杭苏琴. 钙敏感受体和胆囊收缩素-1受体介导大豆蛋白水解物对小鼠食欲的影响[J]. 中国农业科学, 2022, 55(4): 807-815. |
[7] | 姜芬芬, 孙磊, 刘方东, 王吴彬, 邢光南, 张焦平, 张逢凯, 李宁, 李艳, 贺建波, 盖钧镒. 世界大豆生育阶段光温综合反应的地理分化和演化[J]. 中国农业科学, 2022, 55(3): 451-466. |
[8] | 闫强,薛冬,胡亚群,周琰琰,韦雅雯,袁星星,陈新. 大豆根特异性GmPR1-9启动子的鉴定及其在根腐病抗性中的应用[J]. 中国农业科学, 2022, 55(20): 3885-3896. |
[9] | 王巧娟,何虹,李亮,张超,蔡焕杰. 基于AquaCrop模型的大豆灌溉制度优化研究[J]. 中国农业科学, 2022, 55(17): 3365-3379. |
[10] | 原程,张玉先,王孟雪,黄炳林,辛明强,尹小刚,胡国华,张明聪. 中耕时间和深度对大豆光合特性及产量形成的影响[J]. 中国农业科学, 2022, 55(15): 2911-2926. |
[11] | 赵玎玲,王梦璇,孙天杰,苏伟华,赵志华,肖付明,赵青松,闫龙,张洁,王冬梅. 大豆单锌指蛋白基因GmSZFP的克隆及其在SMV与寄主互作中的功能[J]. 中国农业科学, 2022, 55(14): 2685-2695. |
[12] | 任俊波,杨雪丽,陈平,杜青,彭西红,郑本川,雍太文,杨文钰. 种间距离对玉米-大豆带状套作土壤理化性状及根系空间分布的影响[J]. 中国农业科学, 2022, 55(10): 1903-1916. |
[13] | 刘函西,吕浩,郭广雨,刘冬旭,石岩,孙志君,张泽鑫,张艳娇,文莹楠,王洁琦,刘春燕,陈庆山,辛大伟,王锦辉. 大豆根瘤菌HH103 rhcN突变对结瘤能力的影响[J]. 中国农业科学, 2021, 54(6): 1104-1111. |
[14] | 蔡倩,孙占祥,郑家明,王文斌,白伟,冯良山,杨宁,向午燕,张哲,冯晨. 辽西半干旱区玉米大豆间作模式对作物干物质积累分配、产量及土地生产力的影响[J]. 中国农业科学, 2021, 54(5): 909-920. |
[15] | 王诗雅,郑殿峰,项洪涛,冯乃杰,刘雅,刘美玲,靳丹,牟保民. 初花期淹水胁迫对大豆叶片AsA-GSH循环的损伤及烯效唑的缓解效应[J]. 中国农业科学, 2021, 54(2): 271-285. |
|