中国农业科学 ›› 2019, Vol. 52 ›› Issue (14): 2525-2537.doi: 10.3864/j.issn.0578-1752.2019.14.011
收稿日期:
2018-06-07
接受日期:
2019-05-09
出版日期:
2019-07-16
发布日期:
2019-07-26
通讯作者:
李文杨
作者简介:
刘远,Tel:0591-87902045;E-mail: seayuan521@163.com。
基金资助:
LIU Yuan,LI WenYang(),WU XianFeng,HUANG QinLou,GAO ChengFang,CHEN XinZhu,ZHANG XiaoPei
Received:
2018-06-07
Accepted:
2019-05-09
Online:
2019-07-16
Published:
2019-07-26
Contact:
WenYang LI
摘要:
【目的】研究福清山羊与努比亚黑山羊背最长肌组织转录组差异表达水平,为地方山羊品种肉质、生长性状的遗传机制和遗传改良提供理论基础。【方法】分别测定周岁内羯羊育肥的福清山羊与努比亚黑山羊日增重(ADG)以及2个品种周岁背最长肌样品的肌内脂肪含量(inter-muscular fat, IMF);同时利用转录组测序方法对2个品种周岁背最长肌组织进行高通量测序,筛选品种间的差异表达基因(differentially expressed genes, DEGs),并对DEGs功能进行注释和测序结果的荧光定量PCR(quantitative real-time PCR, qRT-PCR)验证。【结果】在羯羊育肥条件下,福清山羊周岁内ADG为65.6g·d -1,极显著低于努比亚黑山羊的127.4g·d -1(Sig.=0.000);而福清山羊周岁背最长肌IMF含量为3.69%,极显著高于努比亚黑山羊的1.83%(Sig.=0.003)。2个品种6个样品的背最长肌转录组测序共得到44.76Gb Clean Data,各样品的Clean reads与参考基因组(山羊)的比对效率在84.65%-86.17%之间。DESeq分析发现了努比亚黑山羊和福清山羊背最长肌的DEGs 608个,其中上调基因61个,下调基因547个。608个DEGs中的518个基因能够被GO(gene ontology)数据库注释,148个DEGs能够被COG(Cluster of Orthologous Groups of proteins)数据库注释,418个DEGs能够被KEGG(kyoto encyclopedia of genes and genomes)数据库注释。KEGG通路分析表明DEGs共富集到222条信号通路中,44条通路显著富集。经过文献检索和对筛选通路相关基因功能的分析,初步判断可能与羊肉质和生长性状相关的通路包括肌动蛋白细胞骨架调节(Regulation of actin cytoskeleton)、Jak-STAT信号转导通路{Janus kinase/signal transducer and activator of transcription(Jak-STAT)signaling pathway}、MAPK信号转导信号通路{mitogen-activated protein kinase (MAPK)signaling pathway}和Ⅰ型糖尿病通路(Type Ⅰdiabetes mellitus);IGF1(Insulin-like growth factor 1,类胰岛素一号增长因子)、ACSL5(Long-chain fatty acyl-CoA synthetases 5,长链酯酰辅酶A合成酶5)、PCK2(phosphoenolpyruvate carboxykinase 2,磷酸烯醇丙酮酸羧激酶2)、PPARGC1A(Hepatic peroxisome proliferator-activated receptor gamma,coactivator 1 alpha,过氧化物酶体增殖激活受体γ共激活因子1α)、JAK2(Janus Kinase 2,Janus激酶2基因)、STAT4(signal transducer and activator of transcription 4,信号转导子和转录激活子4)、IRF8(interferon regulatory factor 8,干扰素调节因子8 )、MAP4K1(mitogen-activated protein kinase kinase kinase kinase 1,有丝分裂原激活蛋白激激激激酶1)等DEGs可作为控制福清山羊肉质、生长性能的候选基因。进一步与参考基因组序列比对分析,共发掘707个新基因(转录本),其中15个基因(转录本)为2个品种的DEGs。经qRT-PCR验证,所选基因(转录本)表达变化模式与转录组测序结果一致,表明测序结果可靠。 【结论】在转录组水平上筛选出了福清山羊和努比亚黑山羊周岁羯羊背最长肌组织的608个DEGs,发掘了707个新基因(转录本),初步认为肌动蛋白细胞骨架调节等4个信号通路在山羊肉质形成和生长发育过程中发挥了重要作用,为进一步探索山羊骨骼肌生长发育和IMF沉积的相关机理提供参考依据。
刘远,李文杨,吴贤锋,黄勤楼,高承芳,陈鑫珠,张晓佩. 福清山羊与努比亚黑山羊背最长肌比较转录组分析[J]. 中国农业科学, 2019, 52(14): 2525-2537.
LIU Yuan,LI WenYang,WU XianFeng,HUANG QinLou,GAO ChengFang,CHEN XinZhu,ZHANG XiaoPei. Transcriptome Analysis of Differentially Gene Expression Associated with longissimus doris Tissue in Fuqing Goat and Nubian Black Goat[J]. Scientia Agricultura Sinica, 2019, 52(14): 2525-2537.
表1
实时荧光定量PCR引物信息"
基因名称 Gene | 上游引物 Forward primer(5′-3′) | 下游引物 Reverse primer(5′-3′) | 产物长度 Product size(bp) |
---|---|---|---|
18S rRNA | GTAACCCGTTGAACCCCATT | CCATCCAATCGGTAGTAGCG | 151 |
TMSSF2 | TAGGATCTCTGTGGCGCACC | TTCCGAATGGACTGGTTGGA | 108 |
CD52 | AGAAGCACCCCCAATCCTTG | GAACCTCCCTGTGTCAGCCA | 105 |
TASR 1 | ACAGGAGAGGCCAGGTTGTA | ACTGTGTCTCCCACAGTGCA | 101 |
GN-1377 | CCCGATTCGGTGACATGTTC | TTCCGTCGGTTTTGGAGTTG | 105 |
GN-1378 | GTCAGTGATCGTGTTCCGCA | TCTCAGGCTGTCGGTGACCT | 101 |
GN-1272 | GGAGACCCAGAGAGCAAAGA | TGTTGACAGCGTCTGCTTTC | 117 |
MyHCⅠ | AAGAACCTGCTGCGGCTG | CCAAGATGTGGCACGGCT | 250 |
MyHCⅡb | GACAACTCCTCTCGCTTTGG | GGACTGTGATCTCCCCTTGA | 247 |
表2
各样品IMF和生长性状分析"
样品 Sample | F1 | F2 | F3 | 平均值 Mean | N4 | N5 | N6 | 平均值 Mean | t | P值 P-value |
---|---|---|---|---|---|---|---|---|---|---|
初生重 Birth weight (kg) | 1.31 | 1.24 | 1.37 | 1.31±0.07 | 3.25 | 3.47 | 3.52 | 3.41±0.14 | -23.14 | 0.000 |
宰前活重 Body Weight (kg) | 24.8 | 25.3 | 25.5 | 25.2±0.36 | 48.2 | 51.4 | 49.7 | 49.8±1.6 | -25.93 | 0.000 |
平均日增重 ADG(g.d-1) | 64.5 | 66.1 | 66.3 | 65.6±0.99 | 123.5 | 131.7 | 126.9 | 127.4±4.12 | -25.24 | 0.000 |
IMF(%) | 3.11 | 3.94 | 4.03 | 3.69±0.51 | 1.79 | 1.73 | 1.97 | 1.83±0.12 | 6.18 | 0.003 |
表3
测序数据与参考山羊基因组的序列比对结果统计"
样品 Sample | 总Reads Total reads | 可定位的Reads Mapped reads | 唯一定位Reads Uniq mapped reads | 多点定位Reads Multiple mapped reads |
---|---|---|---|---|
F1 | 48425148 | 41178058/85.03% | 38498938/79.50% | 2679120/5.53% |
F2 | 52036998 | 44841490/86.17% | 42130532/80.96% | 2710958/5.21% |
F3 | 45474102 | 38872827/85.48% | 37033407/81.44% | 1839420/4.04% |
N4 | 47876820 | 40525347/84.65% | 38452657/80.32% | 2072690/4.33% |
N5 | 52575764 | 44743681/85.10% | 42129626/80.13% | 2614055/4.97% |
N6 | 53888214 | 45906932/85.19% | 43520461/80.76% | 2386471/4.43% |
图3
差异表达基因GO注释 生物学过程(Biological process):1细胞过程 Cellular process;2单一的生物过程 Single-organism process;3生物调节 Biological regulation;4代谢过程 Metabolic process;5刺激反应 Response to stimulus;6多细胞生物过程 Multicellular organismal process;7信号 Signaling;8定位 Localization;9发育过程 Developmental process;10组织或生物起源细胞组件 Cellular component organization or biogenesis;11免疫系统过程 Immune system process;12多生物体过程 Multi-organism process;13繁殖过程Reproductive process;14移动Locomotion;15生物粘附Biological adhesion;16繁殖Reproductive;17生长Growth;18有节奏的过程Rhythmic process;19激素分泌 Hormone secretion;20生物相 Biological phase;21细胞杀伤 Cell killing;22细胞聚集Cell aggregation细胞过程(Cellular process):1细胞部分 Cell part;2细胞 Cell;3细胞器 Organelle;4膜 Membrane;5膜部分 Membrane part;6细胞器部分Organelle part;7高分子复合物 Macromolecular complex;8胞外区Extracellular region;9膜包围内腔Membrane-enclosed lumen;10细胞外区域部分Extracellular region part;11细胞连接Cell junction;12细胞外基质Extracellular matrix;13突触Synapse;14突出部分Synapse part;15细胞外基质部分 Extracellular matrix part;16胶原三聚体Collagen trimer;17细胞核Nucleoid;18病毒体Virion;19病毒体部分Virion part分子功能(Molecular function):1结合 Binding;2催化活性 Catalytic activity;3分子传感器活性Molecular transducer activity;4受体活性Receptor activity;5运输活性Transporter activity;6核酸结合转录因子活性Nucleic acid binding transcription factor activity;7酶调节活性Enzyme regulator activity;8结构分子活性Structural molecule activity;9蛋白结合转录因子活性Protein binding transcription factor activity;10鸟嘌呤核苷酸交换因子活性Guanyl-nucleotide exchange factor activity;11电子载体活性Electron carrier activity;12抗氧化活性Antioxidant activity;13通道调节活性Channel regulator activity;14受体调节活性 Receptor regulator activity;15化学诱导物活性 Chemoattractant activity;16转录调节因子活性 Translation regulator activity;17金属伴侣活性Metallochaperone activity;18排斥活动Chemorepellent activity;19蛋白标签Protein tag ;20成形素活性 Morphogen activity"
表4
测序结果的qRT-PCR验证"
基因 Gene | 转录组测序RNA-Seq | 荧光定量PCR Real-time PCR |
---|---|---|
表达倍数(福清山羊/努比亚黑山羊) log2FC (Fuqing goats/Nubian Black goats) | 表达倍数(福清山羊/努比亚黑山羊) log2FC (Fuqing goats/Nubian Black goats) | |
TMSSF2 | -2.41±0.93 | -2.90±2.51 |
CD52 | 2.48±0.56 | 2.60±1.37 |
TASR1 | 3.43±2.61 | 1.80±0.86 |
GN-1377 | 2.51±1.20 | 0.98±0.76 |
GN-1378 | 2.73±0.33 | 1.08±0.41 |
GN-1272 | 1.22±1.00 | 1.07±0.68 |
MyHcⅠ | -0.24±1.04 | -0.11±1.36 |
MyHcⅡb | -0.62±0.39 | -0.51±1.22 |
[1] | 张建, 陈伟, 张天阳, 曾勇庆 . 猪肉质性状遗传改良研究进展. 山东农业大学学报(自然科学版), 2012,43(4):641-644. |
ZHANG J, CHEN W, ZHANG T Y, ZENG Y Q . Research progress on the improvement of meat quality traits in pigs. Journal of Shandong Agricultural University (Natural Science), 2012, 43(4):641-644. (in Chinese) | |
[2] | 国家畜禽遗传资源委员会. 中国畜禽遗传资源志-羊志. 北京: 中国农业出版社, 2011. |
The National Animal Genetic Resources Committee. Animal Genetic Resources in China Sheep and Goat. Beijing: China Agriculture Press, 2011. ( in Chinese) | |
[3] | 王位, 付绍印, 何小龙, 王艳欣, 王月星, 王标, 刘斌, 刘永斌, 张文广 . 基于RNA-Seq技术挖掘绵羊背最长肌肉质性状相关基因. 中国畜牧兽医, 2018,45(1):122-130. |
WANG W, FU S Y, HE X L, WANG Y X, WANG Y X, WANG B, LIU B, LIU Y B, ZHANG W G . Excavation of meat quality related genes in Longissmus Dorsi of Sheep by RNA-Seq. China Animal Husbandry and Veterinary Medicine, 2018,45(1):122-130. (in Chinese) | |
[4] | Valerio C, Claudia A, Italia D F, Alfredo C . Uncovering the complexity of transcriptomes with RNA-Seq. Journal of Biomedicine and Biotechnology, 2010,2010:1-19. |
[5] | WANG Z, GERSTEIN M, SNYDER M . RNA-Seq: a revolutionary tool for transcriptomics.Nature Reviews Genetics, 10(1):57-63. |
[6] | 朱志明, 陈红萍, 林如龙, 缪中伟, 辛清武, 李丽, 张丹青, 郑嫩珠 . 山麻鸭开产期和产蛋高峰期卵巢组织转录组分析. 中国农业科学, 2016,49(5):998-1007. |
ZHU Z M, CHEN H P, LIN R L, MIAO Z W, XIN Q W, LI L, ZHANG D Q, ZHENG N Z . Transcriptome analysis of ovary tissue in early laying period and egg laying peak period of Shanma ducks. Scientia Agricultura Sinica, 2016,49(5):998-1007. (in Chinese) | |
[7] | 李丽, 缪中伟, 辛清武, 朱志明, 章琳俐, 庄晓东, 郑嫩珠 . 半番鸭与番鸭精巢组织差异表达转录组测序分析. 中国农业科学, 2017,50(18):3608-3619. |
LI L, MIAO Z W, XIN Q W, ZHU ZM, ZHANG L L, ZHUANG X D, ZHENG N Z . Transcriptome analysis of differentially gene expression associated with testis tissue in mule duck and Muscovy duck. Scientia Agricultura Sinica, 2017,50(18):3608-3619. (in Chinese) | |
[8] | 字向东, 罗斌, 夏威, 郑玉才, 熊显荣, 李键, 钟金城, 朱江江, 张正帆 . 基于RNA-Seq技术的牦牛体外受精胚胎发育转录组分析. 中国农业科学, 2018,51(8):1577-1589. |
ZI X D, LUO B, XIA W, ZHENG Y C, XIONG X R, LI J, ZHONG J C, ZHU J J, ZHANG Z F . Transcriptomic analysis of IVF embryonic development in the YAK( Bos grunniens) Via RNA-Seq. Scientia Agricultura Sinica, 2018, 51(8):1577-1589. (in Chinese) | |
[9] |
孟宪然, 杜琛, 王静, 付绍印, 郑竹清, 张文广, 李金泉 . 基于RNA-Seq识别山羊肉品质候选基因. 畜牧兽医学报, 2015,46(8):1300-1307.
doi: 10.11843/j.issn.0366-6964.2015.08.004 |
MENG X R, DU C, WANG J, FU S Y, ZHENG Z Q, ZHANG W G, LI J Q . RNA-Seq Approach for identifying candidate genes of meat quality in goats. Acta Veterinaria et Zootechnica Sinica, 2015, 46(8):1300-1307. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2015.08.004 |
|
[10] | 张春兰 . 小尾寒羊和杜泊羊臂二头肌转录组及肌球蛋白轻链基因家族结构特征分析[D]. 泰安: 山东农业大学, 2014. |
ZHANG C L . Transcriptome analysis of small-tailed Han sheep and Dorper’s biceps brachii and structure characteristics of myosin light chain gene families[D]. Taian: Shandong Agricultural University, 2014. ( in Chinese) | |
[11] | 赵珺 . 内蒙古绒山羊骨骼肌肌肉差异研究[D]. 呼和浩特: 内蒙古农业大学, 2015. |
ZHAO J . Differentially analysis of Inner Mongolian cashmere skeletal muscle[D]. Hohhot: Inner Mongolian Agricultural University, 2015. ( in Chinese) | |
[12] | 陈其新, 张建红, 宋彦军, 董济福 . 我国主要肉羊品种肉用性能的初步评价. 中国草食动物科学, 2012(s1):357-362. |
CHEN Q X, ZHANG J H, SONG Y J, DONG J F . Preliminary evaluation of meat performance of main mutton sheep and goats in China.China Herbivore Science, 2012(s1):357-362. (in Chinese) | |
[13] |
KIM D, PERTEA G, TRAPNELL C, PIMENTEL H, KELLEY R, SALZBERG S L . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 2013,14:R36.
doi: 10.1186/gb-2013-14-4-r36 |
[14] | DONG Y, XIE M, JIANG Y, XIAO N Q, DU X Y, ZHANG W G, TOSSER-KLOPP G, WANG J H, YANG S, LIANG J, CHEN W B, CHEN J, ZENG P, HOU Y, BIAN C, PAN S K, LI Y X, LIU X, WANG W L, SERVIN B, SAYRE B, ZHU B, SWEENEY D, MOORE R, NIE W H, SHEN Y Y, ZHAO R P, ZHANG G J, LI J Q, FARAUT T, WOMACK J, ZHANG Y P, KIJAS J, COCKETT N, XU X, ZHAO S H, WANG J, WANG W . Sequencing and automated whole-genome optical mapping of the genome of a domestic goat ( Capra hircus). Nature Biotechnology, 2013,31(2):135-141. |
[15] |
JIANG H, WONG W H . Statistical inferences for isoform expression in RNA-Seq. Bioinformatics, 2009,25(8):1026-1032.
doi: 10.1093/bioinformatics/btp113 |
[16] |
FLOREA L, SONG L, SALZBERG S L . Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000 Research, 2013,2:188.
doi: 10.12688/f1000research |
[17] | WANG L, FENG Z, WANG X, WANG X, ZHANG X . DEGseq: an R package for identifying differentiallyly expressed genes from RNA-seq data. Bioinformatics,2010, 26, 136-138. |
[18] | ALEXA A, RAHNENFUHRER J . TopGO: enrichment analysis for gene ontology. R package version 2. 8, 2010. |
[19] |
TATUSOV R L, GALPERIN M Y, NATALE D A . The COG database: a tool for genome scale analysis of protein functions and evolution. Nucleic Acids Research, 2000,28(1):33-36.
doi: 10.1093/nar/28.1.33 |
[20] |
KANEHISA M, GOTO S, KAWASHIMA S, OKUNO Y, HATTORI M . The KEGG resource for deciphering the genome. Nucleic Acids Research, 2004,32:D277-D280.
doi: 10.1093/nar/gkh063 |
[21] | 张静 . 巴美肉羊和苏尼特羊Fox01、 MyHC基因表达规律及对肉质的影响[D]. 呼和浩特: 内蒙古农业大学, 2015. |
ZHANG J . The expression of FoxO1、MyHC gene family and its effect on meat quality in Bamei and Sunit Sheep[D]. Hohhot: Inner Mongolian Agricultural University, 2015. ( in Chinese) | |
[22] |
沈林園, 张顺华, 吴泽辉, 郑梦月, 李学伟, 朱砺 . 骨骼肌卫星细胞对肉品质的影响及其分化调控. 遗传, 2013,35(9):1081-1086.
doi: 10.3724/SP.J.1005.2013.01081 |
SHEN L Y, ZHANG S H, WU Z H, ZHENG M Y, LI X W, ZHU L . The influence of satellite cells on meat quality and its differential regulation. Hereditas (Beijing), 2013,35(9):1081-1086. (in Chinese)
doi: 10.3724/SP.J.1005.2013.01081 |
|
[23] |
尹靖东, 李德发 . 猪肉质形成的分子机制与营养调控. 动物营养学报, 2014,26(10):2979-2985.
doi: 10.3969/j.issn.1006-267x.2014.10.009 |
YIN J D, LI D F . Molecular mechanism underlying meat quality formation and its nutritional regulation in pigs. Chinese Journal of Animal Nutrition, 2014,26(10):2979-2985. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2014.10.009 |
|
[24] | 安静 . IGF1在绵羊成肌细胞增殖与分化中的作用[D]. 乌鲁木齐:新疆农业大学, 2013. |
AN J . The role of IGF1 in proliferation and differentiation of sheep myoblast[D]. Urumchi: Xinjiang Agricultural University, 2013. ( in Chinese) | |
[25] | 向浩 . 安徽白山羊卵巢组织差异表达基因的筛选及分析[D]. 合肥: 安徽农业大学, 2014. |
XIANG H . Screening and analysis of differentially expressed genes in ovary of Anhui white goat[D]. Hefei: Anhui Agricultural University, 2014. ( in Chinese) | |
[26] | 梁素芸, 周正奎, 侯水生 . 基于测序技术的畜禽基因组学研究进展. 遗传, 2017,39(4):276-292. |
LIANG S Y, ZHOU Z K, HOU S S . The research progress of farm animal genomics based on sequencing technologies. Hereditas( Beijing), 2017,39(4):276-292. (in Chinese) | |
[27] | 冯小婷 . 梅山-大白猪肌肉组织差异表达基因的筛选、鉴定及功能研究[D]. 武汉: 华中农业大学, 2011. |
FENG X T . Screening, identification and function analysis of genes differentially expressed in porcine skeletal muscle between Meishan and Yorkshire pigs[D]. Wuhan: Huazhong Agricultural University, 2011. ( in Chinese) | |
[28] | GAO Y, ZHANG Y H, JIANG H, Xiao S Q, WANG S, MA Q, SUN G J, LI F J, DENG Q, DAI L S, ZHANG Z H, CUI X S, ZHANG S M, LIU D F, ZHANG J B . Detection of differentially expressed genes in the longissimus dorsi of Northeastern Indigenous and Large White pigs. Genetics and Molecular Research, 2011,10(2):779-791. |
[29] | 王颖萍 . 猪脂肪沉积相关miRNA初步筛选[D]. 泰安: 山东农业大学, 2015. |
WANG Y P . Identification of microRNA related to porcine fat deposition[D]. Taian: Shandong Agricultural University, 2015. ( in Chinese) | |
[30] |
XUE Q, ZHANG G, LI T, LING J, ZHANG X, WANG J . Transcriptomic profile of leg muscle during early growth in chicken. PLoS One, 2017,12(3):e0173824.
doi: 10.1371/journal.pone.0173824 |
[31] |
LIU J, FU R Q, LIU R R, ZHAO G P, ZHENG M Q, CUI H X, LI Q H, SONG J, WANG J, WEN J . Protein profiles for muscle development and intramuscular fat accumulation at different post-hatching ages in chickens. PLoS One, 2016,11(8):e0159722.
doi: 10.1371/journal.pone.0159722 |
[32] |
ZHANG C, WANG G Z, WANG J M, JI Z B, LIU Z H, PI X S, CHEN C X . Characterization and comparative analyses of muscle transcriptomes in Dorper and small-tailed Han sheep using RNA-Seq technique. PLoS One, 2013,8(8):e72686.
doi: 10.1371/journal.pone.0072686 |
[33] | PEARSON G, ROBINSON F, BEERS G T, XU B E, KARANDIKAR M, BERMAN K, COBB M H . Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews, 2001,22(2):153-183. |
[34] |
PERDIGUERO E, RUIZ-BONILLA V, GRESH L, HUI L, BALLESTAR E, SOUSA-VICTOR P, BAEZA-RAJA B, JARDI M, BOSCH-COMAS A, ESTELLER M, CAELLES C, SERRANO A L, WAGNER E F, MUNOZ-CANOVES P . Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation. EMBO Journal, 2007,26(5):1245-1256.
doi: 10.1038/sj.emboj.7601587 |
[35] |
STRLE K, BROUSSARD S R, MCCUSKER R H, SHEN W H, LECLEIR J M, JOHNSON R W, FREUND G G, DANTZER R, KELLEY K W . C-jun N-terminal kinase mediates tumor necrosis factor-alpha suppression of differentiation in myoblasts. Endocrinology, 2006,147(9):4363-4373.
doi: 10.1210/en.2005-1541 |
[36] |
HUANG Z, CHEN D, ZHANG K, YU B, CHEN X, MENG J . Regulation of myostatin signaling by c-Jun N-terminal kinase in C2C12 cells. Cell Signaling Technology, 2007,19(11):2286-2295.
doi: 10.1016/j.cellsig.2007.07.002 |
[37] |
YANG W, CHEN Y, ZHANG Y, WANG X, YANG N, ZHU D . Extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase pathway is involved in myostatin-regulated differentiation repression. Cancer Research, 2006,66(3):1320-1326.
doi: 10.1158/0008-5472.CAN-05-3060 |
[38] |
HOU X, TANG Z, LIU H, WANG N, JU H, LI K . Discovery of MicroRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs. PLoS One, 2012,7(12):e52123.
doi: 10.1371/journal.pone.0052123 |
[39] |
LUO W, LIN S M, LI G H, NIE Q H, ZHANG X Q . Integrative analyses of miRNA-mRNA interactions reveal let-7b, miR-128 and MAPK Pathway Involvement in muscle mass loss in sex-linked dwarf chickens. International Journal of Molecular Sciences, 2016,17:276.
doi: 10.3390/ijms17030276 |
[40] |
DURONIO V, SCHEID M P, ETTINGER S . Downstream signalling events regulated by phosphatidylinositol 3-kinase activity. Cell Signaling Technology, 1998,10(4):233-239.
doi: 10.1016/S0898-6568(97)00129-0 |
[1] | 由玉婉,张雨,孙嘉毅,张蔚. ‘月月粉’月季NAC家族全基因组鉴定及皮刺发育相关成员的筛选[J]. 中国农业科学, 2022, 55(24): 4895-4911. |
[2] | 尤佳玲,李有梅,孙孟豪,谢兆森. ‘黑比诺’葡萄不同叶龄叶片叶绿体内淀粉积累及其相关基因表达差异分析[J]. 中国农业科学, 2022, 55(21): 4265-4278. |
[3] | 孙保娟,汪瑞,孙光闻,王益奎,李涛,宫超,衡周,游倩,李植良. 转录组及代谢组联合解析茄子果色上位遗传效应[J]. 中国农业科学, 2022, 55(20): 3997-4010. |
[4] | 刘鑫,张亚红,袁苗,党仕卓,周娟. ‘红地球’葡萄花芽分化过程中的转录组分析[J]. 中国农业科学, 2022, 55(20): 4020-4035. |
[5] | 徐献斌,耿晓月,李慧,孙丽娟,郑焕,陶建敏. 基于转录组分析ABA促进葡萄花青苷积累相关基因[J]. 中国农业科学, 2022, 55(1): 134-151. |
[6] | 郭永春, 王鹏杰, 金珊, 侯炳豪, 王淑燕, 赵峰, 叶乃兴. 基于WGCNA鉴定茶树响应草甘膦相关的基因共表达模块[J]. 中国农业科学, 2022, 55(1): 152-166. |
[7] | 陈华枝,范元婵,蒋海宾,王杰,范小雪,祝智威,隆琦,蔡宗兵,郑燕珍,付中民,徐国钧,陈大福,郭睿. 基于纳米孔全长转录组数据完善东方蜜蜂微孢子虫的基因组注释[J]. 中国农业科学, 2021, 54(6): 1288-1300. |
[8] | 杜宇,祝智威,王杰,王秀娜,蒋海宾,范元婵,范小雪,陈华枝,隆琦,蔡宗兵,熊翠玲,郑燕珍,付中民,陈大福,郭睿. 利用第三代纳米孔长读段测序技术构建和注释蜜蜂球囊菌的全长转录组[J]. 中国农业科学, 2021, 54(4): 864-876. |
[9] | 赵卫松,郭庆港,董丽红,王培培,苏振贺,张晓云,鹿秀云,李社增,马平. 枯草芽孢杆菌NCD-2对棉花根系分泌物L-脯氨酸响应的转录-蛋白质组学联合分析[J]. 中国农业科学, 2021, 54(21): 4585-4600. |
[10] | 刘恋,唐志鹏,李菲菲,熊江,吕壁纹,马小川,唐超兰,李泽航,周铁,盛玲,卢晓鹏. ‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’贮藏期品质、贮藏特性及果皮转录组分析[J]. 中国农业科学, 2021, 54(20): 4421-4433. |
[11] | 刘锴,何闪闪,张彩霞,张利义,卞书迅,袁高鹏,李武兴,康立群,丛佩华,韩晓蕾. 苹果叶片不定芽再生过程的差异表达基因鉴定与分析[J]. 中国农业科学, 2021, 54(16): 3488-3501. |
[12] | 林兵,陈艺荃,钟淮钦,叶秀仙,樊荣辉. 荷兰鸢尾‘玉妃’花色变异关键结构基因分析[J]. 中国农业科学, 2021, 54(12): 2644-2652. |
[13] | 秦秋红,何旭江,江武军,王子龙,曾志将. 东方蜜蜂幼虫封盖信息素含量及生物合成通路[J]. 中国农业科学, 2021, 54(11): 2464-2475. |
[14] | 龙琴,杜美霞,龙俊宏,何永睿,邹修平,陈善春. 转录因子CsWRKY61对柑橘溃疡病抗性的影响[J]. 中国农业科学, 2020, 53(8): 1556-1571. |
[15] | 滕彩玲,钟晰,吴昊娣,胡燕,周常勇,王雪峰. 马蜂柑响应黄龙病菌不同侵染时期的生物学和转录组学分析[J]. 中国农业科学, 2020, 53(7): 1368-1380. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 900
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 453
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|