中国农业科学 ›› 2016, Vol. 49 ›› Issue (8): 1476-1488.doi: 10.3864/j.issn.0578-1752.2016.08.005

• 植物保护 • 上一篇    下一篇

小麦赤霉病抗性机理研究进展

刘易科1,佟汉文1,朱展望1,陈 泠1,邹 娟1,张宇庆1,高春保1,2   

  1. 1湖北省农业科学院粮食作物研究所/农业部华中地区小麦病害生物学科学观测实验站/湖北省小麦工程技术研究中心,武汉 430064
    2主要粮食作物产业化湖北省协同创新中心,湖北荆州 434025
  • 收稿日期:2015-11-13 出版日期:2016-04-16 发布日期:2016-04-16
  • 通讯作者: 高春保,E-mail:gcbgybwj@163.com
  • 作者简介:刘易科,E-mail:liuyi99168@sohu.com
  • 基金资助:
    国家自然科学基金(31301306)、转基因生物新品种培育科技重大专项(2014ZX0800202B-003)、国家小麦产业技术体系“武汉综合试验站”(CARS-03)、湖北省农业科技创新中心资助项目

Progress in Research on Mechanism of Resistance to Fusarium Head Blight in Wheat

LIU Yi-ke1, TONG Han-wen1, ZHU Zhan-wang1, CHEN Ling1, ZOU Juan1, ZHANG Yu-qing1, GAO Chun-bao1,2   

  1. 1 Food Crops Institute, Hubei Academy of Agricultural Sciences/Wheat Disease Biology Research Station on Central China, Ministry of Agriculture/Hubei Engineering and Technology Research Center of Wheat, Wuhan 430064
    2 Hubei Collaborative Innovation Center for Grain Industry, Jingzhou 434025, Hubei
  • Received:2015-11-13 Online:2016-04-16 Published:2016-04-16

摘要: 赤霉病(Fusarium head blight,FHB)是小麦最主要的病害之一,严重影响小麦生产安全和食品安全,研究小麦赤霉病抗性机理对于解决小麦赤霉病这一世界性难题具有重要意义。根据对赤霉病的抗性表现形式,将小麦赤霉病抗性分为五个大类,分别为抗侵入(Type I)、抗扩展(Type II)、籽粒抗感染(Type III)、耐病性(Type )和抗毒素积累(Type V)。小麦赤霉病的抗性机理可以分为形态机制和生理机制,形态抗性机制是被动的,株高、抽穗期、花期长短、花药挤出程度、有芒无芒、穗长、穗密度、颖壳张开程度和穗部蜡质程度等形态特征均可能与赤霉病抗侵染特性有关。细胞学研究表明,病原菌侵染后抗病品种可迅速从细胞结构和生理生化方面产生防卫反应,通过乳突、胞壁沉积物的形成以及木质素、硫堇、富含羟脯氨酸糖蛋白和水解酶类等的增长来协同抵御病菌在体内的扩展。在植物复杂的信号途径中,水杨酸(SA)、茉莉酸(JA)和乙烯(ET)3种信号途径在植物抵御病原菌入侵中的作用最为重要,SAET信号途径对小麦赤霉病抗性方面的作用目前还存在一定争议,而JA信号途径在小麦赤霉病抗性中积极作用已经被多数研究者所证实。迄今为止,人类定位了200个以上不同类型的抗赤霉病QTL位点,这些位点分布于所有的小麦染色体,其中的22个QTL位点被不同的作图群体所定位,包括2个定位在3BS和6BS染色体上稳定的抗扩展位点Fhb1Fhb2,以及2个定位在4B和5A染色体上的抗侵染位点Fhb4Fhb5在受到病原菌侵染后,植物会产生一系列复杂的信号途径激活应答反应,诱导抗病相关基因的表达,进而引起蛋白以及代谢水平的变化,抵御病原菌的侵袭,研究表明,病程相关蛋白基因、抗菌肽基因、转录因子基因、脱毒相关蛋白基因以及其他赤霉病抗性相关基因均参与了小麦赤霉病抗性提高的过程随着生物工程技术和生物信息技术的迅猛发展,将来可利用图位克隆技术分离抗赤霉病主效基因,并在全基因组关联分析和各种组学技术的基础上,从全基因组和基因调控网络水平上研究小麦赤霉病抗性机理以期在更深层次上理解小麦赤霉病的抗性机理

关键词: 小麦, 赤霉病, QTL定位, 植物信号, 抗病基因

Abstract: Fusarium head blight (FHB) is one of the most important diseases of wheat worldwide, which poses a serious threat to wheat production and food safety. According to the form of wheat resistance to FHB, the resistance types can be divided into five categories: resistance against initial infection (Type I), resistance to pathogen spreading in infected tissue (Type II), resistance to kernel infection(Type III), tolerance(Type Ⅳ) and resistance to toxins in ears by decomposing them(Type V). Resistance mechanism types are usually classified into either morphological or physiological, and the morphological resistance mechanism is synonymous with passive. Wheat morphological characteristics including plant height, heading date and flowering duration, anther extrusion, presence or absence of awns, ear length and density, flower opening width and waxy surfaces on ear tissue may be related to resistance against initial infection. Cytological studies showed that the resistant varieties infected by pathogen can make rapidly defense response by the cell structure, physiological and biochemical responses. The formation of thick-layered appositions and papillae and the increase of lignin, thionins, hydroxyproline-rich glycoproteins and hydrolytic enzymes are cooperated to resist the pathogen development in the resistant varieties. In the complex plant signaling pathways, three signaling pathways including salicylic acid (SA), jasmonic acid (SA) and ethylene (ET) play the most important role in the antifungal response of plant. The role of SA and ET signaling pathways in wheat resistance to FHB is still in controversy, and the positive role of JA signaling pathway has been confirmed by most of the researchers. So far, it is found that more than 200 FHB resistance quantitative trait loci (QTLs) are distributed on all 21 wheat chromosomes, among them 22 QTLs were mapped by different mapping populations, including two stable Type I sites Fhb1 and Fhb2 locating on chromosome 3BS and 6BS, respectively, and two stable Type II sites Fhb3 and Fhb4 locating on chromosome 4B and 5A, respectively. When infected by the plant will produce a series of complex signaling pathway to activate resistant response, and induce the expression of defense-related genes, thereby causing protein and metabolic changes to resist the invasion of pathogen. Studies have indicated that the pathogenesis-related genes, antimicrobial peptide genes, transcription factor genes, detoxification-related genes and other FHB resistance genes are involved in the process of wheat resistance to FHB. In the future, major genes controlling FHB resistance can be cloned by map-based cloning technology, and based on genome-wide association studies and various omics techniques, the mechanism of wheat FHB resistance will be studied on whole genome and gene regulatory network level. This paper can provide a reference for the related research on resistance mechanism to FHB in wheat.

Key words: wheat; fusarium head blight, QTL location, plant signal, resistance genes