[1]Gilroyr S, Trewavasr A. Signal processing and transduction in plant cells: The end of the beginning? Nature Reviews Molecular Cell Biology, 2001, 2(4): 307-314.
[2]Wasteneysr G O, Galwayr M E. Remodeling the cytoskeleton for growth and form: An overview with some new views. Annual Review of Plant Biology, 2003, 54: 691-722.
[3]Himmelspachr R, Wymerr C L, Lloydr C W, Nickr P. Gravity-induced reorientation of cortical microtubules observed in vivo. The Plant Journal, 1999, 18(4): 449-453.
[4]Mathurr J, Chuar N H. Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes. The Plant Cell, 2000, 12(4): 465-477.
[5]Wang Q Y, Nick P. Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid. Plant and Cell Physiology, 2001, 42: 999-1005.
[6]Abdrakhamanova A, Wang Q Y, Khokhlova L, Nick P. Is microtubule disassembly a trigger for cold acclimation? Plant and Cell Physiology, 2003, 44: 676-686.
[7]Van Bruaene N, Joss G, Van Oostveldt P, Reorganization and in vivo dynamics of microtubules during Arabidopsis root hair development. Plant Physiology, 2004, 136(4): 3905-3919.
[8]Wang C, Li J, Yuan M. Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant and Cell Physiology, 2007, 48(11): 1534-1547.
[9]Hamant O, Heisler M G, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz E M, Couder Y, Traas J. Developmental patterning by mechanical signals in Arabidopsis. Science, 2008, 322: 1650-1655.
[10]Wang C, Zhang L J, Huang R D. Cytoskeleton and plant salt stress tolerance. Plant Signaling and Behavior, 2011, 6(1): 29-31.
[11]Wang S, Kurepa J, Hashimoto T, Smalle J A. Salt stress-induced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome-dependent degradation of SPIRAL1. The Plant Cell, 2011, 23(9): 3412-3427.
[12]Smertenko P, Dráber Viklický V, Opatrný Z. Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells. Plant, Cell and Environment, 1997, 20: 1534-1542.
[13]Kopczak S D, Haas N A, Hussey P J, Silflow C D, Snustad D P. The small genome of Arabidopsis contains at least six expressed alpha-tubulin genes. The Plant Cell, 1992, 4(5): 539-547.
[14]Thuleau P, Schroeder J I, Ranjeva R. Recent advances in the regulation of plant calcium channels: Evidence for regulation by G-proteins, the cytoskeleton and second messengers. Current Opinion in Plant Biology, 1998, 1(5): 424-427.
[15]Lau O S, Deng X W. Plant hormone signaling lightens up: Integrators of light and hormones. Current Opinion in Plant Biology, 2010, 13(5): 571-577.
[16]Gallardo K, Job C, Groot S P, Puype M, Demol H, Vandekerckhove J, Job D. Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiology, 2002, 129(2): 823-837.
[17]Li F, Wu X, Tsang E, Cutler A J. Transcriptional profiling of imbibed Brassica napus seed. Genomics, 2005, 86(6): 718-730.
[18]Jiang Y, Yang B, Harris N S. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany, 2007, 58(13): 3591-3607.
[19]Testerink C, Dekker H L, Lim Z Y, Johns M K, Holmes A B, Koster C G, Ktistakis N T, Munnik T. Isolation and identification of phosphatidic acid targets from plants. The Plant Journal, 2004, 39(4): 527-536.
[20]Dixon D P, Skipsey M, Grundy N M, Edwards R. Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiology, 2005, 138(4): 2233-2244.
[21]Ditt R F, Kerr K F, de Figueiredo P, Delrow J, Comai L, Nester E W. The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Molecular Plant-microbe Interactions, 2006, 19(6): 665-681.
[22]Tang W, Deng Z, Oses-Prieto J A, Suzuki N, Zhu S, Zhang X, Burlingame A L, Wang Z Y. Proteomics studies of brassinosteroid signal transduction using prefractionation and two-dimensional DIGE. Molecular and Cellular Proteomics, 2008, 7: 728-738.
[23]Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 1991, 19(6): 1349.
[24]Liu Y G, Mitsukawa N, Oosumi T, Whittier R F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. The Plant Journal, 1995, 8(3): 457-463.
[25]Saez A, Rodrigues A, Santiago J, Rubio S, Rodriguez P L. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. The Plant Cell, 2008, 20(11): 2972-2988.
[26]刘海浩, 吴立柱, 潘延云. 拟南芥微管蛋白TUA2基因表达载体的构建及亚细胞定位. 河北农业大学学报, 2011, 34(2): 40-42.
Liu H H, Wu L Z, Pan Y Y. Construction of expression vector and subcellular localization of microtubulin TUA2 gene from Arabidopsis thaliana. Journal of Agricultural University of Hebei, 2011, 34(2): 40-42. (in Chinese)
[27]赵 霞, 周 波, 李玉花. T-DNA插入突变在植物功能基因组学中的应用. 生物技术通讯, 2009, 20(6): 880-884.
Zhao X, Zhou B, Li Y H. Application of T-DNA insertion mutagenesis in functional genomics of plant. Letters in Biotechnology, 2009, 20(6): 880-884. (in Chinese)
[28]Carpenter J L, Kopczak S D, Snustad D P, Silflow C D. Semi-constitutive expression of an Arabidopsis thaliana alpha-tubulin gene. Plant Molecular Biology, 1993, 21(5): 937-942.
[29]Uribe X, Torres M A, Capellades M, Puigdomenech P, Rigau J. Maize alpha-tubulin genes are expressed according to specific patterns of cell differentiation. Plant Molecular Biology, 1998, 37(6): 1069-1078.
[30]Halliday K J, Hudson M, Ni M, Qin M, Quail P H. poc1: An Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein. Proceedings of the National Academy of Sciences of the USA, 1999, 96(10): 5832-5837.
[31]Himmelbach A, Yang Y, Grill E, Relay and control of abscisic acid signaling. Current Opinion in Plant Biology, 2003, 6(5): 470-479.
[32]Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. The Plant Journal, 2001, 25(3): 295-303.
[33]Kuhn J M, Boisson-Dernier A, Dizon M B, Maktabi M H, Schroeder J I. The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiology, 2006, 140(1): 127-139.
[34]Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T. ABA-hypersensitive germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. The Plant Journal, 2007, 50(6): 935-949.
[35]Rubio S, Rodrigues A, Saez A, Dizon M B, Galle A, Kim T H, Santiago J, Flexas J, Schroeder J I, Rodriguez P L. Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiology, 2009, 150(3): 1345-1355.
[36]Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia M P, Nicolas C, Lorenzo O, Rodriguez P L. Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. The Plant Journal, 2004, 37(3): 354-369.
[37]Saez A, Robert N, Maktabi M H, Schroeder J I, Serrano R, Rodriguez P L. Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB1. Plant Physiology, 2006, 141(4): 1389-1399.
[38]Yamaguchi-Shinozaki K, Shinozaki K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Molecular Genetics and Genomics, 1993, 238(1/2): 17-25.
[39]Fabro G, Kovacs I, Pavet V, Szabados L, Alvarez M E. Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Molecular Plant-microbe Interactions, 2004, 17(4): 343-350. |