| [1] |
|
|
CHEN F E, ZHANG Z P, JIANG Q X, MA L, WANG X M. Cloning and biological function verification of alfalfa ms SPL17. Scientia Agricultura Sinica, 2024, 57(17): 3335-3351. doi: 10.3864/j.issn.0578-1752.2024.17.003. (in Chinese)
|
| [2] |
WANG Z X, MA L, CHEN C J, GUO L J, GUO L P, ZHAO T T, LIU D H. Effects of phosphorus stress on the growth and secondary metabolism of Artemisia argyi. Journal of Plant Research, 2023, 136(6): 879-889.
|
| [3] |
郭丰辉, 丁勇, 马文静, 李西良, 张勇, 师尚礼, 侯向阳. 紫花苜蓿个体性状对土壤磷素供给能力的响应研究. 草原与草坪, 2021, 41(1): 18-25.
|
|
GUO F H, DING Y, MA W J, LI X L, ZHANG Y, SHI S L, HOU X Y. Response of alfalfa individual traits to soil phosphorus supplylevel. Grassland and Turf, 2021, 41(1): 18-25. (in Chinese)
|
| [4] |
SCHULZE J, DREVON J J. P-deficiency increases the O2 uptake per N2 reduced in alfalfa. Journal of Experimental Botany, 2005, 56(417): 1779-1784.
|
| [5] |
GAO S J, GUO R, LIU Z Y, HU Y N, GUO J X, SUN M Z, SHI L X. Integration of the transcriptome and metabolome reveals the mechanism of resistance to low phosphorus in wild soybean seedling leaves. Plant Physiology and Biochemistry, 2023, 194: 406-417.
|
| [6] |
CHIEN P S, CHAO Y T, CHOU C H, HSU Y Y, CHIANG S F, TUNG C W, CHIOU T J. Phosphate transporter PHT1;1 is a key determinant of phosphorus acquisition in Arabidopsis natural accessions. Plant Physiology, 2022, 190(1): 682-697.
|
| [7] |
LI Z Y, HU J Y, WU Y, WANG J X, SONG H, CHAI M F, CONG L L, MIAO F H, MA L C, TANG W, YANG C, TAO Q B, ZHONG S Z, ZHAO Y R, LIU H Q, YANG G F, WANG Z Y, SUN J. Integrative analysis of the metabolome and transcriptome reveal the phosphate deficiency response pathways of alfalfa. Plant Physiology and Biochemistry, 2022, 170: 49-63.
|
| [8] |
LI Z Y, XU H Y, LI Y, WAN X F, MA Z, CAO J, LI Z S, HE F, WANG Y F, WAN L Q, TONG Z Y, LI X L. Analysis of physiological and miRNA responses to Pi deficiency in alfalfa (Medicago sativa L.). Plant Molecular Biology, 2018, 96(4): 473-492.
|
| [9] |
HEUER S, GAXIOLA R, SCHILLING R, HERRERA-ESTRELLA L, LÓPEZ-ARREDONDO D, WISSUWA M, DELHAIZE E, ROUACHED H. Improving phosphorus use efficiency: A complex trait with emerging opportunities. The Plant Journal, 2017, 90(5): 868-885.
doi: 10.1111/tpj.13423
pmid: 27859875
|
| [10] |
YANG X L, HU Q, ZHAO Y F, CHEN Y H, LI C, HE J, WANG Z Y. Identification of GmPT proteins and investigation of their expressions in response to abiotic stress in soybean. Planta, 2024, 259(4): 76.
doi: 10.1007/s00425-024-04348-8
pmid: 38418674
|
| [11] |
NUSSAUME L. Phosphate import in plants: Focus on the PHT1 transporters. Frontiers in Plant Science, 2011, 2: 83.
|
| [12] |
LI Y, WANG X, ZHANG H, YE X S, SHI L, XU F S, DING G D. Phosphate transporter BnaPT37 regulates phosphate homeostasis in Brassica napus by changing its translocation and distribution in vivo. Plants, 2023, 12(19): 3362.
|
| [13] |
MŁODZIŃSKA E, ZBOIŃSKA M. Phosphate uptake and allocation- A closer look at Arabidopsis thaliana L. and Oryza sativa L. Frontiers in Plant Science, 2016, 7: 1198.
|
| [14] |
SHIN H, SHIN H S, DEWBRE G R, HARRISON M J. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. The Plant Journal, 2004, 39(4): 629-642.
|
| [15] |
GUO Z L, CAO H R, ZHAO J, BAI S, PENG W T, LI J, SUN L L, CHEN L Y, LIN Z H, SHI C, et al. A natural uORF variant confers phosphorus acquisition diversity in soybean. Nature Communications, 2022, 13: 3796.
doi: 10.1038/s41467-022-31555-2
pmid: 35778398
|
| [16] |
QIN L, ZHAO J, TIAN J, CHEN L Y, SUN Z A, GUO Y X, LU X, GU M, XU G H, LIAO H. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiology, 2012, 159(4): 1634-1643.
doi: 10.1104/pp.112.199786
pmid: 22740613
|
| [17] |
CHEN L Y, QIN L, ZHOU L L, LI X X, CHEN Z C, SUN L L, WANG W F, LIN Z H, ZHAO J, YAMAJI N, et al. A nodule-localized phosphate transporter GmPT 7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean. New Phytologist, 2019, 221(4): 2013-2025.
|
| [18] |
WANG F, CUI P J, TIAN Y, HUANG Y, WANG H F, LIU F, CHEN Y F. Maize ZmPT7 regulates Pi uptake and redistribution which is modulated by phosphorylation. Plant Biotechnology Journal, 2020, 18(12): 2406-2419.
|
| [19] |
SEO H M, JUNG Y, SONG S Y, KIM Y, KWON T, KIM D H, JEUNG S J, YI Y B, YI G, NAM M H, NAM J. Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice. Biotechnology Letters, 2008, 30(10): 1833-1838.
|
| [20] |
CATARECHA P, SEGURA M D, FRANCO-ZORRILLA J M, GARCÍA-PONCE B, LANZA M, SOLANO R, PAZ-ARES J, LEYVA A. A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. The Plant Cell, 2007, 19(3): 1123-1133.
|
| [21] |
LYNCH J P. Root Phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiology, 2011, 156(3): 1041-1049.
|
| [22] |
CORRELL D. Phosphorus: A rate limiting nutrient in surface waters. Poultry Science, 1999, 78(5): 674-682.
pmid: 10228963
|
| [23] |
WANG X, WANG H F, CHEN Y, SUN M M, WANG Y, CHEN Y F. The transcription factor NIGT1.2 modulates both phosphate uptake and nitrate influx during phosphate starvation in Arabidopsis and maize. The Plant Cell, 2020, 32(11): 3519-3534.
|
| [24] |
HERNÁNDEZ G, VALDÉS-LÓPEZ O, RAMÍREZ M, GOFFARD N, WEILLER G, APARICIO-FABRE R, FUENTES S I, ERBAN A, KOPKA J, UDVARDI M K, VANCE C P. Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiology, 2009, 151(3): 1221-1238.
doi: 10.1104/pp.109.143842
pmid: 19755543
|
| [25] |
CABEZA R A, LIESE R, LINGNER A, VON STIEGLITZ I, NEUMANN J, SALINAS-RIESTER G, POMMERENKE C, DITTERT K, SCHULZE J. RNA-seq transcriptome profiling reveals that Medicago truncatula nodules acclimate N2 fixation before emerging P deficiency reaches the nodules. Journal of Experimental Botany, 2014, 65(20): 6035-6048.
|
| [26] |
栗振义, 张绮芯, 仝宗永, 李跃, 徐洪雨, 万修福, 毕舒贻, 曹婧, 何峰, 万里强, 李向林. 不同紫花苜蓿品种对低磷环境的形态与生理响应分析. 中国农业科学, 2017, 50(20): 3898-3907. doi: 10.3864/j.issn.0578-1752.2017.20.006.
|
|
LI Z Y, ZHANG Q X, TONG Z Y, LI Y, XU H Y, WAN X F, BI S Y, CAO J, HE F, WAN L Q, LI X L. Analysis of morphological and physiological responses to low pi stress in different alfalfas. Scientia Agricultura Sinica, 2017, 50(20): 3898-3907. doi: 10.3864/j.issn.0578-1752.2017.20.006. (in Chinese)
|
| [27] |
MUCHHAL U S, PARDO J M, RAGHOTHAMA K G. Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(19): 10519-10523.
|
| [28] |
LEGGEWIE G, WILLMITZER L, RIESMEIER J W. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: Identification of phosphate transporters from higher plants. The Plant Cell, 1997, 9(3): 381-392.
|
| [29] |
DARAM P, BRUNNER S, PERSSON B L, AMRHEIN N, BUCHER M. Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta, 1998, 206(2): 225-233.
|
| [30] |
LIU H, TRIEU A T, BLAYLOCK L A, HARRISON M J. Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Molecular Plant-Microbe Interactions®, 1998, 11(1): 14-22.
|
| [31] |
PASZKOWSKI U, KROKEN S, ROUX C, BRIGGS S P. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 13324-13329.
|
| [32] |
NAGY R, VASCONCELOS M J V, ZHAO S, MCELVER J, BRUCE W, AMRHEIN N, RAGHOTHAMA K G, BUCHER M. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biology, 2006, 8(2): 186-197.
|
| [33] |
QIN L, GUO Y X, CHEN L Y, LIANG R K, GU M, XU G H, ZHAO J, WALK T, LIAO H. Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PLoS ONE, 2012, 7(10): e47726.
|
| [34] |
LIU F, CHANG X J, YE Y, XIE W B, WU P, LIAN X M. Comprehensive sequence and whole-life-cycle expression profile analysis of the phosphate transporter gene family in rice. Molecular Plant, 2011, 4(6): 1105-1122.
doi: 10.1093/mp/ssr058
pmid: 21832284
|
| [35] |
CAO Y M, LIU J L, LI Y Y, ZHANG J, LI S X, AN Y R, HU T M, YANG P Z. Functional analysis of the phosphate transporter gene MtPT6 from Medicago truncatula. Frontiers in Plant Science, 2021, 11: 620377.
|
| [36] |
LIU J Y, VERSAW W K, PUMPLIN N, GOMEZ S K, BLAYLOCK L A, HARRISON M J. Closely related members of the Medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities. Journal of Biological Chemistry, 2008, 283(36): 24673-24681.
|
| [37] |
HARRISON M J, DEWBRE G R, LIU J Y. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. The Plant Cell, 2002, 14(10): 2413-2429.
|
| [38] |
JAVOT H, PENMETSA R V, BREUILLIN F, BHATTARAI K K, NOAR R D, GOMEZ S K, ZHANG Q, COOK D R, HARRISON M J. Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. The Plant Journal, 2011, 68(6): 954-965.
|
| [39] |
VOLPE V, GIOVANNETTI M, SUN X G, FIORILLI V, BONFANTE P. The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in non mycorrhizal roots. Plant, Cell & Environment, 2016, 39(3): 660-671.
|
| [40] |
AL-NIEMI T S, KAHN M L, MCDERMOTT T R. Phosphorus uptake by bean nodules. Plant and Soil, 1998, 198(1): 71-78.
|