中国农业科学 ›› 2024, Vol. 57 ›› Issue (17): 3318-3334.doi: 10.3864/j.issn.0578-1752.2024.17.002
武玉花1(), 翟杉杉1, 普豪祯1,2, 高鸿飞1, 张华3, 李俊1, 李允静1, 肖芳1, 吴刚1, 徐利群3(
)
收稿日期:
2024-02-26
接受日期:
2024-04-26
出版日期:
2024-09-01
发布日期:
2024-09-04
通信作者:
基金资助:
WU YuHua1(), ZHAI ShanShan1, PU HaoZhen1,2, GAO HongFei1, ZHANG Hua3, LI Jun1, LI YunJing1, XIAO Fang1, WU Gang1, XU LiQun3(
)
Received:
2024-02-26
Accepted:
2024-04-26
Published:
2024-09-01
Online:
2024-09-04
摘要:
随着基因编辑技术的兴起,基因编辑产品已经从实验室走向产业化应用,2022年农业农村部针对没有引入外源基因的基因编辑植物的安全评价,专门出台了《农业用基因编辑植物安全评价指南(试行)》,2023年为基因编辑大豆AE15-18-1颁发了首个生物安全证书,标志着我国正式开启了基因编辑作物的产业化进程。基因编辑产品不同于传统转基因产品,不含有外源DNA序列,常用的转基因检测策略不适用于基因编辑产品的检测。随着农作物基因编辑产品产业化进程的积极推进,如何高效准确检测是否为基因编辑产品及其编辑特征,是关系到基因编辑产品产业化利用和知识产权保护的重要依据,急需开发适用于基因编辑产品的检测技术。以检测靶标序列是否被编辑为目标,基于PCR、测序等技术开发出了很多检测技术,并广泛应用于产品研发过程中基因编辑产品的筛选。产业化后的安全监管和知识产权保护,不仅要检测样品是否被编辑,还要快速识别待测样品的核苷酸序列特征,确定样品的来源和身份,进而对基因编辑成分进行精准定量,判定是否需要定量标识。目前,对于含有少数几个碱基插入、缺失及单碱基变异等突变的基因编辑产品,难以应用常规PCR或测序等技术进行快速的身份鉴定,更难以对基因编辑成分的含量进行精准定量检测。以快速识别编辑后的DNA序列特征、并精准定量为目标,根据基因编辑产品的分子特征,本文综述了基于凝胶电泳的普通PCR法、基于测序的检测方法、基于实时荧光PCR的检测方法、基于数字PCR的检测方法、基于可编程内切酶的方法,以及基于仪器的检测方法在基因编辑产品检测中的应用及优缺点,以期探索出适用于基因编辑产品的检测和定量策略,为后续基因编辑产品检测方法的开发提供参考。
武玉花, 翟杉杉, 普豪祯, 高鸿飞, 张华, 李俊, 李允静, 肖芳, 吴刚, 徐利群. 农业用植物基因编辑产品检测方法研究进展[J]. 中国农业科学, 2024, 57(17): 3318-3334.
WU YuHua, ZHAI ShanShan, PU HaoZhen, GAO HongFei, ZHANG Hua, LI Jun, LI YunJing, XIAO Fang, WU Gang, XU LiQun. Progress on Detection Methods for Gene-Edited Organisms[J]. Scientia Agricultura Sinica, 2024, 57(17): 3318-3334.
表1
不同基因编辑产品检测方法的优缺点比较"
序号 No. | 方法种类 Classification | 方法名称 Method | 优点 Advantage | 缺点 Disadvantage |
---|---|---|---|---|
1 | PCR-电泳检测方法 PCR-electrophoresis detection method | PCR-电泳法 PCR-electrophoresis method | 只需常规设备,操作门槛低,适用于编辑产品的筛查 Requires only routine equipment, a low operational threshold, and suitable for the screening of edited products | 操作步骤繁琐,PCR反应后,还需要电泳等操作;受限于电泳的分辨率,不能检测单碱基或相同大小片段的替换;不能进行特异基因编辑产品的识别检测 The procedure is quite cumbersome, requiring additional steps after PCR, such as electrophoresis; it is limited by the resolution of the electrophoresis, which cannot detect single base substitutions or replacements of identically sized fragments; and it cannot perform specific identification of gene- edited products |
PCR-酶切-电泳法 PCR-digestion- electrophoresis method | 操作步骤繁琐;依赖酶切位点的有无;不能进行特异编辑产品的识别检测 The operation steps are cumbersome; it relies on the presence or absence of enzyme sites; it cannot perform specific identification of GE products | |||
2 | 基于测序的检测方法 Sequencing-based detection method | Sanger测序法 Sanger sequencing method | 通用性强,可检测一切变异 Universal, capable of detecting all types of variations | 通常依赖第三方测序公司,耗时 Relies on third-party sequencing companies, time- consuming |
高通量测序法 High-throughput sequencing method | 适用范围广,可检测脱靶及载体骨架残留 A broad range of applications, capable of detecting off-target as well as residual vector backbone | 通常依赖第三方测序公司,耗时;数据分析复杂 Relies on third-party sequencing companies, time- consuming, and the data analysis is complex | ||
焦磷酸测序法 Pyrophosphate sequencing method | 准确性高,速度快 High accuracy and fast speed | 通常依赖第三方测序公司,耗时;检测瞬时发光,通量受限;只能测短序列 Relies on third-party sequencing companies, time- consuming, detecting transient luminescence, the throughput is limited and only capable of measuring short sequences | ||
3 | 基于实时荧光PCR的检测方法 Real-time PCR-based detection method | TaqMan探针法 TaqMan probe method | 特异性强、灵敏度高、速度快、不易交错污染;设计不同的TaqMan探针,可进行编辑产品的筛查和特异识别;可定量检测 Strong specificity, high sensitivity, rapid speed, and low risk of cross-contamination; it allows for the screening and specific identification of GE products by designing different TaqMan probes; and it enables quantitative detection | 1—2个碱基的变异,难以设计满足特异性要求的TaqMan探针 Variations of 1-2 bp make it difficult to design TaqMan probes that meet the specificity requirements |
高分辨率熔解曲线法 High-resolution melting analysis | 采用荧光染料,成本低;分析荧光曲线,速度快;可进行编辑产品的筛查 Using fluorescent dyes, low cost; analyzing the fluorescence curve is fast; allows for the screening of GE products | 不能识别熔解曲线相似的不同产品;只能筛查样品是否被编辑,不能对特定的基因编辑产品进行鉴定 It cannot distinguish between different products with similar melting curves; it can only screen whether the sample has been edited, but cannot identify specific GE products | ||
KASP方法 KASP method | 采用通用性探针,成本低;检测荧光信号,速度快;适合单碱基变异基因编辑产品的检测;对野生型和编辑型同步检测 Using universal probes, low cost; rapid speed; suitable for the detection of GE products with SNV; and it allows for simultaneous detection of both wild-type and edited type | 引物设计位点受限,部分序列难以设计特异性引物;只有一种野生型或编辑型模板时,有非特异性扩增信号,与低含量产品难区分 Primer design sites are limited, and it is difficult to design specific primers for some sequences; when only wild-type or edited template is present in PCR, there can be non-specific amplification, making it difficult to distinguish from low-level products | ||
ARMs-qPCR法 ARMs-qPCR method | 特异性提高,能识别单碱基变异基因编辑产品 Specificity is enhanced, allowing the identification of GE products with SNVs | 引物设计位点受限,部分序列难以设计引物;引入错配碱基,导致方法的灵敏度下降 Primer design is site-limited, making it difficult to design primers for some sequences; the introduction of mismatched bases can lead to a decrease in the sensitivity of the method | ||
rhPCR法 rhPCR method | 特异性强,灵敏度高,速度快,能识别单碱基变异基因编辑产品 Strong specificity, high sensitivity, fast speed, capable of identifying GE products with SNVs | 引物成本较高;对发生单碱基缺失的基因编辑产品,难以设计引物 Primer costs are relatively high; it is difficult to design primers for GE products with a single base deletion | ||
4 | 基于数字PCR的检测方法 Digital PCR-based detection method | TaqMan探针法 TaqMan probe method | 与基于实时荧光PCR的TaqMan探针法兼容;适用于基因编辑产品的精准定量检测;适用于评价动物细胞的编辑效率 Compatible with the TaqMan probe method based on qPCR; suitable for precise quantitative detection of GE products; suitable for evaluating the editing efficiency of animal cells | 当前成本高;1—2个碱基的变异,难以设计满足特异性要求的TaqMan探针 Current costs are high; variations of 1-2 base pairs make it difficult to design TaqMan probes that meet the specificity requirements |
5 | 基于可编程内切酶的检测方法 Cas-based detection method | 基于Cas9的检测技术 Cas9-based method | 能识别单碱基变异基因编辑产品 Capable of identifying GE products with SNVs | 受限于突变位点附近PAM位点的有无;酶切产物需要进一步分析,操作步骤比较繁琐 Limited by the presence or absence of PAM sites near the mutation site; the digestion products require further analysis, making the operational steps more cumbersome |
基于Cas12、Cas13、Cas14的检测技术 Cas12, Cas13 and Cas14-based method | 能识别单碱基变异基因编辑产品;通过反式切割信号分子发出信号,适合与核酸预扩增集成,适用于现场检测 Capable of identifying GE products with SNVs; it emits fluorescent signal by a trans-cleavage of signaling molecule, suitable for on-site testing by integrating with pre-amplification of DNA | 受限于突变位点附近PAM位点的有无 Limited by the presence or absence of PAM sites near the mutation site | ||
6 | 基于仪器的检测方法 Instrument-based detection method | 基因芯片法、质谱法等 Gene chip method, mass spectrometry, etc | 自动化分析,通量高,速度快 Automated analysis, high throughput, and fast speed | 设备昂贵,成本高昂 The equipment is expensive, resulting in high costs |
[1] |
|
[2] |
窦迎港, 甄珍. 基因编辑作物技术原理、商业化及检测研究进展. 作物杂志, 2023(2): 16-23.
|
|
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
doi: 10.1038/ng.3484 pmid: 26813761 |
[9] |
李红杰, 贾亚男, 张彦军, 王兴荣, 陈丽梅. 国内外转基因与基因编辑作物监管现状. 中国农业大学学报, 2023, 28(9): 1-11.
|
|
|
[10] |
王梦雨, 王颢潜, 王旭静, 王志兴. 基因编辑产品检测技术研究进展. 生物技术进展, 2021, 11(4): 438-445.
|
doi: 10.19586/j.2095-2341.2021.0037 |
|
[11] |
刘春霞, 耿立召, 许建平. 植物基因组编辑检测方法. 遗传, 2018, 40(12): 1075-1091.
|
|
|
[12] |
doi: 10.1007/s00299-016-2062-3 pmid: 27699473 |
[13] |
|
[14] |
pmid: 2048738 |
[15] |
|
[16] |
|
[17] |
pmid: 14740086 |
[18] |
|
[19] |
doi: 10.1111/gtc.12050 pmid: 23573916 |
[20] |
|
[21] |
|
[22] |
|
[23] |
麻艳超, 郭振清, 周丽艳, 陈普, 陆鸣, 东方阳, 王建设. SNP的检测方法及其在农作物遗传育种中的应用. 河北科技师范学院学报, 2014, 28(3): 24-28.
|
|
|
[24] |
唐棣, 王志民. SNPs检测方法研究进展. 上海交通大学学报(农业科学版), 2007, 25(4): 405-418.
|
|
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
doi: 10.1016/j.pediatrneurol.2010.05.023 pmid: 20933175 |
[30] |
doi: 10.2144/04364PF01 pmid: 15088388 |
[31] |
pmid: 10958643 |
[32] |
pmid: 17641638 |
[33] |
|
[34] |
李葱葱, 高越, 沈晓玲, 李飞武, 赵新, 龙丽坤, 李亮, 王永, 兰青阔. 基于焦磷酸测序技术的基因编辑位点检测方法的建立. 中国农业大学学报, 2019, 24(9): 10-16.
|
|
|
[35] |
doi: 10.1104/pp.15.00783 pmid: 26294043 |
[36] |
doi: 10.1104/pp.15.00793 pmid: 26269544 |
[37] |
|
[38] |
doi: 10.1177/1040638712471343 pmid: 23345274 |
[39] |
doi: 10.1111/tpj.13961 pmid: 29761864 |
[40] |
|
[41] |
|
[42] |
张洪文, 赵圣博, 闫晓红, 李俊, 翟杉杉, 肖芳, 高鸿飞, 李允静, 吴刚, 武玉花. 一种基因编辑位点特异性PCR方法的开发和应用. 中国油料作物学报, 2021, 43(1): 77-89.
|
doi: 10.19802/j.issn.1007-9084.2020314 |
|
[43] |
|
[44] |
doi: 10.1006/abio.1996.9916 pmid: 9056205 |
[45] |
|
[46] |
|
[47] |
|
[48] |
杨青青, 唐家琪, 张昌泉, 高继平, 刘巧泉. KASP标记技术在主要农作物中的应用及展望. 生物技术通报, 2022, 38(4): 58-71.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1378 |
|
|
[49] |
|
[50] |
|
[51] |
|
[52] |
邵婕, 杨正修, 邹强, 陆峥飞, 李凡. ARMS-PCR技术在玫瑰果鉴别中的应用. 食品工业, 2023, 44(1): 161-165.
|
|
|
[53] |
吕瑞辰, 谭伟龙, 齐永, 朱长强, 艾乐乐, 韩招久. 利用ARMS-PCR等位基因分型方法对德国小蠊钠通道基因新突变的检测及分型研究. 中华卫生杀虫药械, 2022, 28(1): 68-71.
|
|
|
[54] |
doi: 10.1007/s11033-018-4426-y pmid: 30426382 |
[55] |
doi: 10.1039/d0nr00360c pmid: 32350488 |
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
pmid: 1389177 |
[66] |
doi: 10.1016/j.clinbiochem.2015.03.015 pmid: 25828047 |
[67] |
doi: 10.1038/nprot.2016.027 pmid: 26914317 |
[68] |
|
[69] |
|
[70] |
|
[71] |
doi: 10.1038/nmeth.2840 pmid: 24509632 |
[72] |
doi: S0167-7799(18)30360-3 pmid: 30654914 |
[73] |
|
[74] |
|
[75] |
doi: S1097-2765(18)30991-2 pmid: 30639240 |
[76] |
|
[77] |
doi: 10.1111/pbi.12938 pmid: 29723918 |
[78] |
doi: 10.1021/acs.analchem.7b04542 pmid: 29260561 |
[79] |
|
[80] |
|
[81] |
|
[82] |
doi: 10.1126/science.aar6245 pmid: 29449511 |
[83] |
|
[84] |
doi: 10.1021/acssynbio.9b00209 pmid: 31532637 |
[85] |
|
[86] |
|
[87] |
|
[88] |
doi: 10.1126/science.aam9321 pmid: 28408723 |
[89] |
doi: 10.1126/science.aav4294 pmid: 30337455 |
[90] |
|
[91] |
doi: 10.1038/nbt.3900 pmid: 28581492 |
[92] |
doi: 10.1038/s41587-018-0011-0 pmid: 30742127 |
[93] |
doi: 10.1023/B:BEGE.0000038493.26202.d3 pmid: 15319578 |
[94] |
doi: 10.1194/jlr.D400038-JLR200 pmid: 15722566 |
[95] |
刘雅诚, 郝金萍, 严江伟, 唐晖, 王静, 任嘉诚. 用dHPLC技术检测线粒体DNA编码区单核苷酸多态性. 中国法医学杂志, 2006, 21(3): 142-146.
|
|
|
[96] |
pmid: 11295828 |
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
doi: 10.3389/fpls.2019.00236 pmid: 30930911 |
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
European Network of GMO Laboratories (ENGL). Definition of Minimum Performance Requirements for Analytical Methods of GMO, 2015, http://gmo-crl.jrc.ec.europa.eu/guidancedocs.htm.
|
[109] |
International Organization for Standardization (ISO). Biotechnology — Requirements for evaluating the performance of quantification methods for nucleic acid target sequences. qPCR and dPCR, ISO 20395: 2019, https://www.iso.org/standard/67893.html.
|
[110] |
|
[1] | 许娜, 唐颖, 徐正进, 孙健, 徐铨. 籼粳杂种不育的遗传分析和候选基因鉴定[J]. 中国农业科学, 2024, 57(8): 1417-1429. |
[2] | 徐金青, 边海燕, 陈同睿, 王蕾, 王寒冬, 尤恩, 邓超, 唐有林, 沈裕虎. 青海省青稞主栽品种昆仑14与昆仑15的基因组序列多态性比较[J]. 中国农业科学, 2024, 57(21): 4192-4204. |
[3] | 王妮, 施哲逸, 尤元政, 张超, 周文武, 周瀛, 祝增荣. miRNA对褐飞虱鞘脂质代谢基因表达的影响及沉默NlSPT1和NlSMase4的small RNA分析[J]. 中国农业科学, 2024, 57(20): 4022-4034. |
[4] | 马荆鄂, 熊信威, 周敏, 吴斯琪, 韩甜, 饶友生, 王樟凤, 许继国. 基于垂体全长转录组测序分析鸡睾丸性状相关基因[J]. 中国农业科学, 2024, 57(20): 4130-4144. |
[5] | 周信雁, 陈思宇, 魏宇飞, 朱瑜, 冯君茜, 丁点草, 陆贵锋, 杨尚东. 红皮白肉与红皮红肉火龙果植株茎部内生微生物群落结构特征[J]. 中国农业科学, 2024, 57(2): 416-428. |
[6] | 陈文杰, 陈渊, 韦清源, 汤复跃, 郭小红, 陈淑芳, 覃夏燕, 韦荣昌, 梁江. 利用高世代转录组测序挖掘控制南方大豆皱叶症候选基因[J]. 中国农业科学, 2024, 57(15): 2914-2930. |
[7] | 苗龙, 舒阔, 胡彦姣, 黄茹, 何艮华, 张文明, 王晓波, 邱丽娟. 大豆种子硬实突变体Mzp661的鉴定和基因定位[J]. 中国农业科学, 2024, 57(11): 2065-2078. |
[8] | 刘燕玲, 邱奥, 张梓鹏, 王雪, 都鹤鹤, 罗文学, 王贵江, 魏霞, 施文颖, 丁向东. 基于靶向捕获测序的猪单倍型基因组选择效果研究[J]. 中国农业科学, 2024, 57(11): 2243-2253. |
[9] | 李俊, 单露英, 肖芳, 李允静, 高鸿飞, 翟杉杉, 吴刚, 张秀杰, 武玉花. 转基因玉米MON87427梯度含量基体标准物质的研制[J]. 中国农业科学, 2023, 56(8): 1444-1455. |
[10] | 肖涛, 李辉, 罗韦, 叶涛, 余欢, 陈友波, 石钰仕, 赵德鹏, 吴芸. 基于转录组测序筛选鸡蛋绿壳性状相关基因[J]. 中国农业科学, 2023, 56(8): 1594-1605. |
[11] | 温一博, 陈淑婷, 徐正进, 孙健, 徐铨. DEP1、Gn1a和qSW5组合应用调控水稻穗部性状[J]. 中国农业科学, 2023, 56(7): 1218-1227. |
[12] | 郑文燕, 常源升, 何平, 何晓文, 王森, 高文胜, 李林光, 王海波. ‘鲁丽’ב红1#’苹果杂交群体全基因组KASP标记开发及验证[J]. 中国农业科学, 2023, 56(5): 935-950. |
[13] | 苏琦, 汤亚飞, 佘小漫, 蓝国兵, 于琳, 吴正伟, 李正刚, 何自福. 广东省蒲瓜病毒种类鉴定及多重RT-PCR检测方法的建立[J]. 中国农业科学, 2023, 56(23): 4684-4695. |
[14] | 张昕, 杨星宇, 张超然, 张冲, 郑海霞, 张仙红. 绿豆象热激蛋白超家族基因的鉴定及表达分析[J]. 中国农业科学, 2023, 56(19): 3814-3828. |
[15] | 吴元龙, 惠凤娇, 潘振远, 尤春源, 林海荣, 李志博, 金双侠, 聂新辉. 后基因组时代发展抗除草剂作物的机遇及挑战[J]. 中国农业科学, 2023, 56(17): 3285-3301. |
|