[1] |
ZENG X Q, GUO Y, XU Q J, MASCHER M, GUO G G, LI S C, MAO L K, LIU Q F, XIA Z F, ZHOU J H, YUAN H J, TAI S S, WANG Y L, WEI Z X, SONG L, ZHA S, LI S M, TANG Y W, BAI L J, ZHUANG Z H, HE W M, ZHAO S C, FANG X D, GAO Q, YIN Y, WANG J, YANG H M, ZHANG J, HENRY R J, STEIN N, TASHI N. Origin and evolution of Qingke barley in Tibet. Nature Communications, 2018, 9(1): 5433.
doi: 10.1038/s41467-018-07920-5
pmid: 30575759
|
[2] |
LIU H B, LI Y, YOU M L, LIU X. Comparison of physicochemical properties of β-glucans extracted from hull-less barley bran by different methods. International Journal of Biological Macromolecules, 2021, 182: 1192-1199.
doi: 10.1016/j.ijbiomac.2021.05.043
pmid: 33989685
|
[3] |
GUO T L, HORVATH C, CHEN L, CHEN J, ZHENG B. Understanding the nutrient composition and nutritional functions of highland barley (Qingke): A review. Trends in Food Science & Technology, 2020, 103: 109-117.
|
[4] |
吴昆仑, 姚晓华, 迟德钊, 姚有华, 党斌, 张志斌, 任又成, 谢德庆. 粮草双高青稞新品种选育及产业化. 青海科技, 2018, 25(1): 28-31.
|
|
WU K L, YAO X H, CHI D Z, YAO Y H, DANG B, ZHANG Z B, REN Y C, XIE D Q. Breeding and industrialization of new highland barley varieties with double high grain and grass. Qinghai Science and Technology, 2018, 25(1): 28-31. (in Chinese)
|
[5] |
任又成, 张志斌, 吴昆仑, 蒋礼玲, 姚晓华. 青稞新品种昆仑14号. 中国种业, 2014(8): 85.
|
|
REN Y C, ZHANG Z B, WU K L, JIANG L L, YAO X H. A new highland barley variety Kunlun 14. China Seed Industry, 2014(8): 85. (in Chinese)
|
[6] |
任又成, 吴昆仑, 姚晓华, 蒋礼玲, 陈丽华. 高产优质青稞新品种昆仑15号的选育及其特征特性. 麦类作物学报, 2014, 34(8): 封3.
|
|
REN Y C, WU K L, YAO X H, JIANG L L, CHEN L H. Breeding and characteristics of a new highland barley variety Kunlun 15 with high yield and good quality. Journal of Triticeae Crops, 2014, 34(8): inside back cover. (in Chinese)
|
[7] |
MASCHER M, GUNDLACH H, HIMMELBACH A, BEIER S, TWARDZIOK S O, WICKER T, RADCHUK V, DOCKTER C, HEDLEY P E, RUSSELL J, BAYER M, RAMSAY L, LIU H, HABERER G, ZHANG X Q, ZHANG Q S, BARRERO R A, LI L, TAUDIEN S, GROTH M, FELDER M, HASTIE A, ŠIMKOVÁ H, STAŇKOVÁ H, VRÁNA J, CHAN S, MUÑOZ-AMATRIAÍN M, OUNIT R, WANAMAKER S, BOLSER D, COLMSEE C, SCHMUTZER T, ALIYEVA-SCHNORR L, GRASSO S, TANSKANEN J, CHAILYAN A, SAMPATH D, HEAVENS D, CLISSOLD L, CAO S J, CHAPMAN B, DAI F, HAN Y, LI H, LI X, LIN C Y, MCCOOKE J K, TAN C, WANG P H, WANG S B, YIN S Y, ZHOU G F, POLAND J A, BELLGARD M I, BORISJUK L, HOUBEN A, DOLEŽL J, AYLING S, LONARDI S, KERSEY P, LANGRIDGE P, MUEHLBAUER G J, CLARK M D, CACCAMO M, SCHULMAN A H, MAYER K F X, PLATZER M, CLOSE T J, SCHOLZ U, HANSSON M, ZHANG G P, BRAUMANN I, SPANNAGL M, LI C D, WAUGH R, STEIN N. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544(7651): 427-433.
|
[8] |
ZENG X Q, LONG H, WANG Z, ZHAO S C, TANG Y W, HUANG Z Y, WANG Y L, XU Q J, MAO L K, DENG G B, YAO X M, LI X F, BAI L J, YUAN H J, PAN Z F, LIU R J, CHEN X, WANGMU Q M, CHEN M, YU L L, LIANG J J, DUNZHU D W, ZHENG Y, YU S Y, LUOBU Z X, GUANG X M, LI J, DENG C, HU W S, CHEN C H, TABA X N, GAO L Y, LV X D, BEN ABU Y, FANG X D, NEVO E, YU M Q, WANG J, TASHI N. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 1095-1100.
|
[9] |
DAI F, WANG X L, ZHANG X Q, CHEN Z H, NEVO E, JIN G L, WU D Z, LI C D, ZHANG G P. Assembly and analysis of a Qingke reference genome demonstrate its close genetic relation to modern cultivated barley. Plant Biotechnology Journal, 2018, 16(3): 760-770.
doi: 10.1111/pbi.12826
pmid: 28871634
|
[10] |
JAYAKODI M, PADMARASU S, HABERER G, BONTHALA V S, GUNDLACH H, MONAT C, LUX T, KAMAL N, LANG D, HIMMELBACH A, ENS J, ZHANG X Q, ANGESSA T T, ZHOU G F, TAN C, HILL C, WANG P H, SCHREIBER M, BOSTON L B, PLOTT C, JENKINS J, GUO Y, FIEBIG A, BUDAK H, XU D D, ZHANG J, WANG C C, GRIMWOOD J, SCHMUTZ J, GUO G G, ZHANG G P, MOCHIDA K, HIRAYAMA T, SATO K, CHALMERS K J, LANGRIDGE P, WAUGH R, POZNIAK C J, SCHOLZ U, MAYER K F X, SPANNAGL M, LI C D, MASCHER M, STEIN N. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588(7837): 284-289.
|
[11] |
杨正钊, 王梓豪, 胡兆荣, 辛明明, 姚颖垠, 彭惠茹, 尤明山, 宿振起, 郭伟龙. 小麦主栽品种济麦22与良星99的基因组序列多态性比较分析. 作物学报, 2020, 46(12): 1870-1883.
doi: 10.3724/SP.J.1006.2020.01009
|
|
YANG Z Z, WANG Z H, HU Z R, XIN M M, YAO Y Y, PENG H R, YOU M S, SU Z Q, GUO W L. Comparative analysis of the genomic sequences between commercial wheat varieties Jimai 22 and Liangxing 99. Acta Agronomica Sinica, 2020, 46(12): 1870-1883. (in Chinese)
|
[12] |
陶星星, 吴亚辉, 刘蕊, 李国华, 杜小珍, 张志标. 三红蜜柚、琯溪蜜柚与水晶香柚的基因组序列多态性分析. 中国种业, 2022(5): 66-70.
|
|
TAO X X, WU Y H, LIU R, LI G H, DU X Z, ZHANG Z B. Genome sequence polymorphism analysis of ‘Sanhongyou’ ‘Guanxiyou’ and ‘Shuijingxiangyou’. China Seed Industry, 2022(5): 66-70. (in Chinese)
|
[13] |
葸玮, 郝晨阳, 李甜, 刘云川, 焦成智, 王化俊, 张学勇. 基因组时代-麦类基因组学研究现状及趋势. 植物遗传资源学报, 2022, 23(4): 929-942.
doi: 10.13430/j.cnki.jpgr.20211227005
|
|
XI W, HAO C Y, LI T, LIU Y C, JIAO C Z, WANG H J, ZHANG X Y. The era genomics: Current status and future trend of genomics research Triticeae crops. Journal of Plant Genetic Resources, 2022, 23(4): 929-942. (in Chinese)
|
[14] |
UAUY C. Wheat genomics comes of age. Current Opinion in Plant Biology, 2017, 36: 142-148.
doi: S1369-5266(16)30230-8
pmid: 28346895
|
[15] |
BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120.
doi: 10.1093/bioinformatics/btu170
pmid: 24695404
|
[16] |
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.
doi: 10.1093/bioinformatics/btp324
pmid: 19451168
|
[17] |
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.
doi: 10.1101/gr.107524.110
pmid: 20644199
|
[18] |
陈同睿, 王蕾, 王寒冬, 尤恩, 邓超, 边海燕, 沈裕虎, 徐金青. 利用SNP标记鉴定青稞种质资源. 麦类作物学报, 2024, 44(1): 65-73.
|
|
CHEN T R, WANG L, WANG H D, YOU E, DENG C, BIAN H Y, SHEN Y H, XU J Q. Identification of the naked barley germplasms using SNP markers. Journal of Triticeae Crops, 2024, 44(1): 65-73. (in Chinese)
|
[19] |
CINGOLANI P, PLATTS A, WANG L L, COON M, NGUYEN T, WANG L, LAND S J, LU X Y, RUDEN D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 2012, 6(2): 80-92.
|
[20] |
QUINLAN A R, HALL I M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 2010, 26(6): 841-842.
doi: 10.1093/bioinformatics/btq033
pmid: 20110278
|
[21] |
DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T, MCVEAN G, DURBIN R, 1000 GENOMES PROJECT ANALYSIS GROUP. The variant call format and VCFtools. Bioinformatics, 2011, 27(15): 2156-2158.
doi: 10.1093/bioinformatics/btr330
pmid: 21653522
|
[22] |
TSUCHIYA T. Genetics of uz, uz2 and uz3 for semi-brachytic mutations in barley. Barley Genetics Newsletter, 1972, 2: 87-90.
|
[23] |
HAAHR V. Studies of an induced, high-yielding dwarf-mutant of spring barley// Proceedings of the Third International Barley Genetics Symposium (Garching, Verlag Karl Thiemig, München, 1975), 1976, 215.
|
[24] |
THOMAS W B, POWELL W, WOOD W. The chromosomal location of the dwarfing gene present in the spring barley variety Golden Promise. Heredity, 1984, 53(1): 177-183.
|
[25] |
SWENSON S P, WELLS D G. The linkage relations of four genes in chromosome I of Barley. Agronomy Journal, 1944, 36(5): 429-435.
|
[26] |
姚佳延, 于国琦, 洪益, 吕超, 许如根. 大麦株高类性状的遗传分析与QTL定位. 华北农学报, 2021, 36(2): 28-32.
doi: 10.7668/hbnxb.20191631
|
|
YAO J Y, YU G Q, HONG Y, LÜ C, XU R G. Genetic analysis and QTL mapping of plant height-related characters in barley. Acta Agriculturae Boreali-Sinica, 2021, 36(2): 28-32. (in Chinese)
doi: 10.7668/hbnxb.20191631
|
[27] |
JIA Q J, ZHANG J J, WESTCOTT S, ZHANG X Q, BELLGARD M, LANCE R, LI C D. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Functional & Integrative Genomics, 2009, 9(2): 255-262.
|
[28] |
HEDDEN P. The genes of the green revolution. Trends in Genetics, 2003, 19(1): 5-9.
doi: 10.1016/s0168-9525(02)00009-4
pmid: 12493241
|
[29] |
PATIL V, MCDERMOTT H I, MCALLISTER T, CUMMINS M, SILVA J C, MOLLISON E, MEIKLE R, MORRIS J, HEDLEY P E, WAUGH R, DOCKTER C, HANSSON M, MCKIM S M. APETALA2 control of barley internode elongation. Development, 2019, 146(11): dev170373.
|
[30] |
GAO S P, FANG J, XU F, WANG W, CHU C C. Rice HOX12 regulates panicle exsertion by directly modulating the expression of ELONGATED UPPERMOST INTERNODE1. The Plant Cell, 2016, 28(3): 680-695.
|