[1] |
ZHANG Z, ZHANG Q, DING X D. Advances in genomic selection in domestic animals. Chinese Science Bulletin, 2011, 56(25): 2655-2663.
|
[2] |
HAYES B J, BOWMAN P J, CHAMBERLAIN A J, GODDARD M E. Invited review: Genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science, 2009, 92(2): 433-443.
doi: 10.3168/jds.2008-1646
pmid: 19164653
|
[3] |
张金鑫, 唐韶青, 宋海亮, 高虹, 蒋尧, 江一凡, 弥世荣, 孟庆利, 于凡, 肖炜, 云鹏, 张勤, 丁向东. 北京地区大白猪基因组联合育种研究. 中国农业科学, 2019, 52(12): 2161-2170. doi: 10.3864/j.issn.0578-1752.2019.12.013.
|
|
ZHANG J X, TANG S Q, SONG H L, GAO H, JIANG Y, JIANG Y F, MI S R, MENG Q L, YU F, XIAO W, YUN P, ZHANG Q, DING X D. Joint genomic selection of Yorkshire in Beijing. Scientia Agricultura Sinica, 2019, 52(12): 2161-2170. doi: 10.3864/j.issn.0578-1752.2019.12.013. (in Chinese)
|
[4] |
周子文, 付璐, 孟庆利, 周海深, 张勤, 丁向东. 利用后裔测定验证大白猪基因组选择实施效果研究. 畜牧兽医学报, 2020, 51(10): 2367-2377.
doi: 10.11843/j.issn.0366-6964.2020.10.005
|
|
ZHOU Z W, FU L, MENG Q L, ZHOU H S, ZHANG Q, DING X D. Using progeny testing to evaluate the efficiency of genomic selection in large white pigs. Chinese Journal of Animal and Veterinary Sciences, 2020, 51(10): 2367-2377. (in Chinese)
|
[5] |
SONG H L, ZHANG Q, DING X D. The superiority of multi-trait models with genotype-by-environment interactions in a limited number of environments for genomic prediction in pigs. Journal of Animal Science and Biotechnology, 2020, 11(1): 88.
|
[6] |
SONG H L, ZHANG Q, MISZTAL I, DING X D. Genomic prediction of growth traits for pigs in the presence of genotype by environment interactions using single-step genomic reaction norm model. Journal of Animal Breeding and Genetics, 2020, 137(6): 523-534.
|
[7] |
BHAT J A, ALI S, SALGOTRA R K, MIR Z A, DUTTA S, JADON V, TYAGI A, MUSHTAQ M, JAIN N, SINGH P K, SINGH G P, PRABHU K V. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Frontiers in Genetics, 2016, 7: 221.
|
[8] |
MACLEOD I M, BOWMAN P J, VANDER JAGT C J, HAILE- MARIAM M, KEMPER K E, CHAMBERLAIN A J, SCHROOTEN C, HAYES B J, GODDARD M E. Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits. BMC Genomics, 2016, 17(1): 144.
|
[9] |
SOLBERG T R, SONESSON A K, WOOLLIAMS J A, MEUWISSEN T H E. Genomic selection using different marker types and densities. Journal of Animal Science, 2008, 86(10): 2447-2454.
doi: 10.2527/jas.2007-0010
pmid: 18407980
|
[10] |
MAHER B. Personal genomes: the case of the missing heritability. Nature, 2008, 456: 18-21.
|
[11] |
WON S, PARK J E, SON J H, LEE S H, PARK B H, PARK M, PARK W C, CHAI H H, KIM H, LEE J, LIM D. Genomic prediction accuracy using haplotypes defined by size and hierarchical clustering based on linkage disequilibrium. Frontiers in Genetics, 2020, 11: 134.
doi: 10.3389/fgene.2020.00134
pmid: 32211021
|
[12] |
BOICHARD D, GUILLAUME F, BAUR A, CROISEAU P, ROSSIGNOL M N, BOSCHER M Y, DRUET T, GENESTOUT L, COLLEAU J J, JOURNAUX L, DUCROCQ V, FRITZ S. Genomic selection in French dairy cattle. Animal Production Science, 2012, 52(3): 115.
|
[13] |
MUCHA A, WIERZBICKI H, KAMIŃSKI S, OLEŃSKI K, HERING D. High-frequency marker haplotypes in the genomic selection of dairy cattle. Journal of Applied Genetics, 2019, 60(2): 179-186.
doi: 10.1007/s13353-019-00489-9
pmid: 30877657
|
[14] |
FEITOSA F L B, PEREIRA A S C, AMORIM S T, PERIPOLLI E, DE OLIVEIRA SILVA R M, BRAZ C U, FERRINHO A M, SCHENKEL F S, BRITO L F, ESPIGOLAN R, DE ALBUQUERQUE L G, BALDI F. Comparison between haplotype-based and individual SNP-based genomic predictions for beef fatty acid profile in Nelore cattle. Journal of Animal Breeding and Genetics, 2020, 137(5): 468-476.
doi: 10.1111/jbg.12463
pmid: 31867831
|
[15] |
徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53(15): 2983-3004. doi: 10.3864/j.issn.0578-1752.2020.15.001.
|
|
XU Y B, YANG Q N, ZHENG H J, XU Y F, SANG Z Q, GUO Z F, PENG H, ZHANG C, LAN H F, WANG Y B, WU K S, TAO J J, ZHANG J N. Genotyping by target sequencing (GBTS) and its applications. Scientia Agricultura Sinica, 2020, 53(15): 2983-3004. doi: 10.3864/j.issn.0578-1752.2020.15.001. (in Chinese)
|
[16] |
BURRIDGE A J, WILKINSON P A, WINFIELD M O, BARKER G L A, ALLEN A M, COGHILL J A, WATERFALL C, EDWARDS K J. Conversion of array-based single nucleotide polymorphic markers for use in targeted genotyping by sequencing in hexaploid wheat (Triticum aestivum). Plant Biotechnology Journal, 2018, 16(4): 867-876.
doi: 10.1111/pbi.12834
pmid: 28913866
|
[17] |
GUO Z F, WANG H W, TAO J J, REN Y H, XU C, WU K S, ZOU C, ZHANG J N, XU Y B. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Molecular Breeding, 2019, 39(3): 37.
|
[18] |
BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120.
doi: 10.1093/bioinformatics/btu170
pmid: 24695404
|
[19] |
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.
doi: 10.1093/bioinformatics/btp324
pmid: 19451168
|
[20] |
LI H, HANDSAKER B, WYSOKER A, FENNELL T, RUAN J, HOMER N, MARTH G, ABECASIS G, DURBIN R, SUBGROUP 1 G P D P. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25(16): 2078-2079.
doi: 10.1093/bioinformatics/btp352
pmid: 19505943
|
[21] |
VAN DER AUWERA G A, CARNEIRO M O, HARTL C, POPLIN R, DEL ANGEL G, LEVY-MOONSHINE A, JORDAN T, SHAKIR K, ROAZEN D, THIBAULT J, BANKS E, GARIMELLA K V, ALTSHULER D, GABRIEL S, DEPRISTO M A. From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Current Protocols in Bioinformatics, 2013, 43(1110): 11.10.1-11.10.33.
|
[22] |
BROWNING B L, BROWNING S R. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. The American Journal of Human Genetics, 2009, 84(2): 210-223.
|
[23] |
LEGARRA A, AGUILAR I, MISZTAL I. A relationship matrix including full pedigree and genomic information. Journal of Dairy Science, 2009, 92(9): 4656-4663.
doi: 10.3168/jds.2009-2061
pmid: 19700729
|
[24] |
CHRISTENSEN O F, LUND M S. Genomic prediction when some animals are not genotyped. Genetics Selection Evolution, 2010, 42(1): 2.
|
[25] |
VANRADEN P M. Efficient methods to compute genomic predictions. Journal of Dairy Science, 2008, 91(11): 4414-4423.
doi: 10.3168/jds.2007-0980
pmid: 18946147
|
[26] |
UTSUNOMIYA Y T, MILANESI M, UTSUNOMIYA A T H, AJMONE-MARSAN P, GARCIA J F. GHap: An R package for genome-wide haplotyping. Bioinformatics, 2016, 32(18): 2861-2862.
doi: 10.1093/bioinformatics/btw356
pmid: 27283951
|
[27] |
SONG H, ZHANG J, JIANG Y, GAO H, TANG S, MI S, YU F, MENG Q, XIAO W, ZHANG Q, DING X. Genomic prediction for growth and reproduction traits in pig using an admixed reference population. Journal of Animal Science, 2017, 95(8): 3415-3424.
doi: 10.2527/jas.2017.1656
pmid: 28805914
|
[28] |
MEUWISSEN T H E, GODDARD M E. Prediction of identity by descent probabilities from marker-haplotypes. Genetics Selection Evolution, 2001, 33(6): 605-634.
pmid: 11742632
|
[29] |
DA Y, LIANG Z X, PRAKAPENKA D. Multifactorial methods integrating haplotype and epistasis effects for genomic estimation and prediction of quantitative traits. Frontiers in Genetics, 2022, 13: 922369.
|
[30] |
WERNER C R, GAYNOR R C, GORJANC G, HICKEY J M, KOX T, ABBADI A, LECKBAND G, SNOWDON R J, STAHL A. How population structure impacts genomic selection accuracy in cross- validation: implications for practical breeding. Frontiers in Plant Science, 2020, 11: 592977.
|
[31] |
HESS M, DRUET T, HESS A, GARRICK D. Fixed-length haplotypes can improve genomic prediction accuracy in an admixed dairy cattle population. Genetics Selection Evolution, 2017, 49(1): 54.
doi: 10.1186/s12711-017-0329-y
pmid: 28673233
|
[32] |
HAILE A, HILALI M, HASSEN H, LOBO R N B, RISCHKOWSKY B. Estimates of genetic parameters and genetic trends for growth, reproduction, milk production and milk composition traits of Awassi sheep. Animal, 2019, 13(2): 240-247.
doi: 10.1017/S1751731118001374
pmid: 29954467
|
[33] |
LIANG Z X, TAN C, PRAKAPENKA D, MA L, DA Y. Haplotype analysis of genomic prediction using structural and functional genomic information for seven human phenotypes. Frontiers in Genetics, 2020, 11: 588907.
|
[34] |
BIAN C, PRAKAPENKA D, TAN C, YANG R F, ZHU D, GUO X L, LIU D W, CAI G Y, LI Y L, LIANG Z X, WU Z F, DA Y, HU X X. Haplotype genomic prediction of phenotypic values based on chromosome distance and gene boundaries using low-coverage sequencing in Duroc pigs. Genetics Selection Evolution, 2021, 53(1): 78.
doi: 10.1186/s12711-021-00661-y
pmid: 34620094
|
[35] |
CALUS M P, MEUWISSEN T H, WINDIG J J, KNOL E F, SCHROOTEN C, VEREIJKEN A L, VEERKAMP R F. Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values. Genetics Selection Evolution, 2009, 41(1): 11.
|
[36] |
邱奥, 王雪, 孟庆利, 张勤, 丁向东. 3款猪50K SNP芯片基因型填充效果研究. 中国畜牧杂志, 2021, 57(S1): 33-38.
|
|
QIU A, WANG X, MENG Q L, ZHANG Q, DING X D. Study on genotype imputation of three pig 50K SNP chips. Chinese Journal of Animal Science, 2021, 57(S1): 33-38. (in Chinese)
|