[1] |
XUE J, BAO Y Y, LI B L, CHENG Y B, PENG Z Y, LIU H, XU H J, ZHU Z R, LOU Y G, CHENG J A, ZHANG C X. Transcriptome analysis of the brown planthopper Nilaparvata lugens. PLoS ONE, 2010, 5(12): e14233.
|
[2] |
HUANG H J, LIU C W, ZHOU X, ZHANG C X, BAO Y Y. A mitochondrial membrane protein is a target for rice ragged stunt virus in its insect vector. Virus Research, 2017, 229: 48-56.
|
[3] |
MAO K K, ZHANG X L, ALI E, LIAO X, JIN R H, REN Z J, WAN H, LI J H. Characterization of nitenpyram resistance in Nilaparvata lugens (Stål). Pesticide Biochemistry and Physiology, 2019, 157: 26-32.
|
[4] |
WU S F, ZENG B, ZHENG C, MU X C, ZHANG Y, HU J, ZHANG S, GAO C F, SHEN J L. The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in the period 2012-2016. Scientific Reports, 2018, 8: 4586.
|
[5] |
ZHANG X L, LIAO X, MAO K K, ZHANG K X, WAN H, LI J H. Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvata lugens (Stål) in China 2012-2014. Pesticide Biochemistry and Physiology, 2016, 132: 13-20.
|
[6] |
SHEN Y, CHEN Y Z, LOU Y H, ZHANG C X. Vitellogenin and vitellogenin-like genes in the brown planthopper. Frontiers in Physiology, 2019, 10: 1181.
doi: 10.3389/fphys.2019.01181
pmid: 31620015
|
[7] |
ASGARI S. Role of microRNAs in insect host-microorganism interactions. Frontiers in Physiology, 2011, 2: 48.
doi: 10.3389/fphys.2011.00048
pmid: 21886625
|
[8] |
CHEN J, LI T, PANG R. miR-2703 regulates the chitin biosynthesis pathway by targeting chitin synthase 1a in Nilaparvata lugens. Insect Molecular Biology, 2020, 29(1): 38-47.
|
[9] |
ZHANG Q, DOU W, TANING C N T, YU S S, YUAN G R, SHANG F, SMAGGHE G, WANG J J. miR-309a is a regulator of ovarian development in the oriental fruit fly Bactrocera dorsalis. PLoS Genetics, 2022, 18(9): e1010411.
|
[10] |
SHANG F, NIU J, DING B Y, ZHANG W, WEI D D, WEI D, JIANG H B, WANG J J. The miR-9b microRNA mediates dimorphism and development of wing in aphids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(15): 8404-8409.
|
[11] |
HARRISON P J, DUNN T M, CAMPOPIANO D J. Sphingolipid biosynthesis in man and microbes. Natural Product Reports, 2018, 35(9): 921-954.
doi: 10.1039/c8np00019k
pmid: 29863195
|
[12] |
HANNUN Y A, OBEID L M. Sphingolipids and their metabolism in physiology and disease. Nature Reviews Molecular Cell Biology, 2018, 19(3): 175-191.
doi: 10.1038/nrm.2017.107
pmid: 29165427
|
[13] |
KITATANI K, IDKOWIAK-BALDYS J, HANNUN Y A. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cellular Signalling, 2008, 20(6): 1010-1018.
doi: 10.1016/j.cellsig.2007.12.006
pmid: 18191382
|
[14] |
史肖肖. 鞘脂类及其代谢酶在褐飞虱发育与生殖中的功能[D]. 杭州: 浙江大学, 2018.
|
|
SHI X X. The functions of sphingolipids and their metabolic enzymes in development and reproduction of the rice brown planthopper, Nilaparvata lugens (Stål)[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
|
[15] |
SHI X X, HUANG Y J, BEGUM M A, ZHU M F, LI F Q, ZHANG M J, ZHOU W W, MAO C G, ZHU Z R. A neutral ceramidase, NlnCDase, is involved in the stress responses of brown planthopper, Nilaparvata lugens (Stål). Scientific Reports, 2018, 8: 1130.
|
[16] |
张鹤. 褐飞虱鞘磷脂合酶和鞘磷脂酶同源基因的功能研究[D]. 杭州: 浙江大学, 2020.
|
|
ZHANG H. Functional research of homologous genes of sphingomyelin synthase and sphingomyelinase in Nilaparvata lugens (Stål)[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
|
[17] |
SHI X X, ZHANG H, CHEN M, ZHANG Y D, ZHU M F, ZHANG M J, LI F Q, WRATTEN S, ZHOU W W, MAO C, ZHU Z R. Two sphingomyelin synthase homologues regulate body weight and sphingomyelin synthesis in female brown planthopper, N. lugens (Stål). Insect Molecular Biology, 2019, 28(2): 253-263.
doi: 10.1111/imb.12549
pmid: 30375099
|
[18] |
SHI X X, ZHANG H, QUAIS M K, CHEN M, WANG N, ZHANG C, MAO C G, ZHU Z R. Knockdown of sphingomyelinase (NlSMase) causes ovarian malformation of brown planthopper, Nilaparvata lugens (Stål). Insect Molecular Biology, 2022, 31(4): 391-402.
|
[19] |
陈明. 褐飞虱两个丝氨酸棕榈酰转移酶基因的功能研究[D]. 杭州: 浙江大学, 2019.
|
|
CHEN M. Function of two serine palmitoyltransferase genes in Nilaparvata lugens (Stål)[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
|
[20] |
朱晴子. 褐飞虱鞘脂质代谢酶microRNA的鉴定及其功能研究[D]. 杭州: 浙江大学, 2016.
|
|
ZHU Q Z. Identification and functional analysis of microRNA related with enzymes of sphingolipid metabolism in brown rice planthoppers[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
|
[21] |
李飞强. 褐飞虱靶向鞘脂质代谢酶SPT1和SPP的microRNA的鉴定及其生物学功能分析[D]. 杭州: 浙江大学, 2018.
|
|
LI F Q. Identification and functional analysis of microRNA targetting SPT1 and SPP, key sphingolipid-metabolizing enzymes, in Nilaparvata lugens (Stål)[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
|
[22] |
WANG N, CHEN M, ZHOU Y, ZHOU W W, ZHU Z R. The microRNA pathway core genes are indispensable for development and reproduction in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2023, 32(5): 528-543.
|
[23] |
WANG N, ZHANG C, CHEN M, SHI Z Y, ZHOU Y, SHI X X, ZHOU W W, ZHU Z R. Characterization of microRNAs associated with reproduction in the brown planthopper, Nilaparvata lugens. International Journal of Molecular Sciences, 2022, 23(14): 7808.
|
[24] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods, 2001, 25(4): 402-408.
|
[25] |
BUSHATI N, COHEN S M. MicroRNA functions. Annual Review of Cell and Developmental Biology, 2007, 23: 175-205.
pmid: 17506695
|
[26] |
RAHIMPOUR H, MOHARRAMIPOUR S, ASGARI S, MEHRABADI M. The microRNA pathway core genes are differentially expressed during the development of Helicoverpa armigera and contribute in the insect’s development. Insect Biochemistry and Molecular Biology, 2019, 110: 121-127.
|
[27] |
ZHANG X, LU K, ZHOU Q. Dicer 1 is crucial for the oocyte maturation of telotrophic ovary in Nilaparvata lugens (Stål) (Hemiptera: Geometroidea). Archives of Insect Biochemistry and Physiology, 2013, 84(4): 194-208.
|
[28] |
ZENG Q, LONG G, YANG H, ZHOU C, YANG X, WANG Z, JIN D. SfDicer1 participates in the regulation of molting development and reproduction in the white-backed planthopper, Sogatella furcifera. Pesticide Biochemistry and Physiology, 2023, 191: 105347.
|
[29] |
YANG R L, ZHANG Q, FAN J Y, YUE Y, CHEN E H, YUAN G R, DOU W, WANG J J. RNA interference of Argonaute-1 delays ovarian development in the oriental fruit fly, Bactrocera dorsalis (Hendel). Pest Management Science, 2021, 77(9): 3921-3933.
|
[30] |
MAO K, JIN R, REN Z, ZHANG J, LI Z, HE S, MA K, WAN H, LI J. miRNAs targeting CYP6ER1 and CarE1 are involved in nitenpyram resistance in Nilaparvata lugens. Insect Science, 2022, 29(1): 177-187.
|
[31] |
DUAN T F, GAO S J, WANG H C, LI L, LI Y Y, TAN Y, PANG B P. MicroRNA let-7-5p targets the juvenile hormone primary response gene Kruppel homolog 1 and regulates reproductive diapause in Galeruca daurica. Insect Biochemistry and Molecular Biology, 2022, 142: 103727.
|
[32] |
DUAN T F, LI L, WANG H C, PANG B P. MicroRNA miR-2765-3p regulates reproductive diapause by targeting FoxO in Galeruca daurica. Insect Science, 2023, 30(2): 279-292.
|
[33] |
LAMPE L, JENTZSCH M, KIERSZNIOWSKA S, LEVASHINA E A. Metabolic balancing by miR-276 shapes the mosquito reproductive cycle and Plasmodium falciparum development. Nature Communications, 2019, 10: 5634.
|
[34] |
HE J, CHEN Q, WEI Y, JIANG F, YANG M, HAO S, GUO X, CHEN D, KANG L. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(3): 584-589.
|
[35] |
SONG J, LI W, ZHAO H, ZHOU S. Clustered miR-2, miR-13a, miR-13b and miR-71 coordinately target Notch gene to regulate oogenesis of the migratory locust Locusta migratoria. Insect Biochemistry and Molecular Biology, 2019, 106: 39-46.
|
[36] |
SONG J, LI W, ZHAO H, GAO L, FAN Y, ZHOU S. The microRNAs let-7 and miR-278 regulate insect metamorphosis and oogenesis by targeting the juvenile hormone early-response gene Kruppel-homolog 1. Development, 2018, 145(24): dev170670.
|
[37] |
HE K, XIAO H, SUN Y, SITU G, XI Y, LI F. MicroRNA-14 as an efficient suppressor to switch off ecdysone production after ecdysis in insects. RNA Biology, 2019, 16(9): 1313-1325.
doi: 10.1080/15476286.2019.1629768
pmid: 31184522
|
[38] |
VARGHESE J, COHEN S M. MicroRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes & Development, 2007, 21(18): 2277-2282.
|
[39] |
KUMARSWAMY R, CHANDNA S. Inhibition of microRNA-14 contributes to actinomycin-D-induced apoptosis in the Sf9 insect cell line. Cell Biology International, 2010, 34(8): 851-857.
doi: 10.1042/CBI20100035
pmid: 20486901
|
[40] |
XU P, VERNOOY S Y, GUO M, HAY B A. The Drosophila microRNA miR-14 suppresses cell death and is required for normal fat metabolism. Current Biology, 2003, 13(9): 790-795.
|
[41] |
NELSON C, AMBROS V, BAEHRECKE E H. miR-14 regulates autophagy during developmental cell death by targeting ip3-kinase 2. Molecular Cell, 2014, 56(3): 376-388.
doi: 10.1016/j.molcel.2014.09.011
pmid: 25306920
|
[42] |
LIU Z, LING L, XU J, ZENG B, HUANG Y, SHANG P, TAN A. MicroRNA-14 regulates larval development time in Bombyx mori. Insect Biochemistry and Molecular Biology, 2018, 93: 57-65.
|
[43] |
张圣锋. miR-2b-2-5p靶向CREB调控橘小实蝇脂质代谢和生殖发育的分子机制[D]. 武汉: 华中农业大学, 2022.
|
|
ZHANG S F. miR-2b-2-5p regulates lipid metabolism and reproduction by targeting CREB in Bactrocera dorsalis[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese)
|