[1] |
ZINEDINE A, SORIANO J M, MOLTÓ J C, MAÑES J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of Zearalenone: An oestrogenic mycotoxin. Food and Chemical Toxicology, 2007, 45(1): 1-18. doi: 10.1016/j.fct.2006.07.030.
doi: 10.1016/j.fct.2006.07.030
pmid: 17045381
|
[2] |
ALSHANNAQ A, YU J H. Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health, 2017, 14(6): 632. doi: 10.3390/ijerph14060632.
doi: 10.3390/ijerph14060632
|
[3] |
GRUBER-DORNINGER C, JENKINS T, SCHATZMAYR G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins, 2019, 11(7): 375. doi: 10.3390/toxins11070375.
doi: 10.3390/toxins11070375
|
[4] |
doi: 10.13257/j.cnki.21-1104/s.2019.06.008
|
|
WANG G Q, LIU Y D, DUAN S H. Mycotoxin contamination and investigation of feed and feed materials in the first half of 2019. Swine Production, 2019(6): 17-20. doi: 10.13257/j.cnki.21-1104/s.2019.06. 008.(in Chinese)
doi: 10.13257/j.cnki.21-1104/s.2019.06. 008
|
[5] |
ROPEJKO K, TWARUŻEK M. Zearalenone and its metabolites- general overview, occurrence, and toxicity. Toxins, 2021, 13(1): 35. doi: 10.3390/toxins13010035.
doi: 10.3390/toxins13010035
|
[6] |
KNUTSEN H K, ALEXANDER J, BARREGÅRD L, BIGNAMI M, BRÜSCHWEILER B, CECCATELLI S, COTTRILL B, DINOVI M, EDLER L, GRASL-KRAUPP B, et al. Risks for animal health related to the presence of Zearalenone and its modified forms in feed. EFSA Journal, 2017, 15(7): e04851. doi: 10.2903/j.efsa.2017.4851.
doi: 10.2903/j.efsa.2017.4851
|
[7] |
doi: 10.3864/j.issn.0578-1752.2014.18.019
|
|
JIANG S Z, SUN H, HUANG L B, YANG Z B, WANG S J, LIU F X, F. CHI. Effects of Zearalenone contaminated diets on serum metabolite and histopathology of liver and kidney in weaned piglets. Scientia Agricultura Sinica, 2014, 47(18): 3708-3715. doi: 10.3864/j.issn.0578-1752.2014.18.019.(in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.18.019
|
[8] |
LIANG Z, REN Z H, GAO S, CHEN Y, YANG Y Y, YANG D, DENG J L, ZUO Z C, WANG Y, SHEN L H. Individual and combined effects of deoxynivalenol and Zearalenone on mouse kidney. Environmental Toxicology and Pharmacology, 2015, 40(3): 686-691. doi: 10.1016/j.etap.2015.08.029.
doi: 10.1016/j.etap.2015.08.029
pmid: 26407231
|
[9] |
WANG N, LI P, PAN J W, WANG M Y, LONG M, ZANG J, YANG S H. Bacillus velezensis A2 fermentation exerts a protective effect on renal injury induced by Zearalenone in mice. Scientific Reports, 2018, 8(1): 13646. doi: 10.1038/s41598-018-32006-z.
doi: 10.1038/s41598-018-32006-z
|
[10] |
ZHENG W L, WANG B J, LI X, WANG T, ZOU H, GU J H, YUAN Y, LIU X Z, BAI J F, BIAN J C, LIU Z P. Zearalenone promotes cell proliferation or causes cell death? Toxins, 2018, 10(5): 184. doi: 10.3390/toxins10050184.
doi: 10.3390/toxins10050184
|
[11] |
ZHENG W L, WANG B J, SI M X, ZOU H, SONG R L, GU J H, YUAN Y, LIU X Z, ZHU G Q, BAI J F, BIAN J C, LIU Z P. Zearalenone altered the cytoskeletal structure via ER stress- Autophagy-oxidative stress pathway in mouse TM4 sertoli cells. Scientific Reports, 2018, 8: 3320. Doi: 10.1038/S41598-018-21567-8.
doi: 10.1038/S41598-018-21567-8
|
[12] |
YU J J, AUWERX J. The role of sirtuins in the control of metabolic homeostasis. Annals of the New York Academy of Sciences, 2009, 1173: E10-E19. doi: 10.1111/j.1749-6632.2009.04952.x.
doi: 10.1111/j.1749-6632.2009.04952.x
|
[13] |
ZHANG X J, JIANG L S, LIU H M. Forkhead box protein O1: Functional diversity and post-translational modification, a new therapeutic target? Drug Design, Development and Therapy, 2021, 15: 1851-1860. doi: 10.2147/DDDT.S305016.
doi: 10.2147/DDDT.S305016
pmid: 33976536
|
[14] |
LICZBIŃSKI P, MICHAŁOWICZ J, BUKOWSKA B. Molecular mechanism of curcumin action in signaling pathways: Review of the latest research. Phytotherapy Research, 2020, 34(8): 1992-2005. doi: 10.1002/ptr.6663.
doi: 10.1002/ptr.6663
pmid: 32141677
|
[15] |
SIKORA-POLACZEK M, BIELAK-ZMIJEWSKA A, SIKORA E. Molecular and cellular mechanisms of curcumin action: Beneficial effect on organism. Postepy Biochemii, 2011, 57(1): 74-84.
|
[16] |
BEN SALEM I, PROLA A, BOUSSABBEH M, GUILBERT A, BACHA H, ABID-ESSEFI S, LEMAIRE C. Crocin and Quercetin protect HCT116 and HEK293 cells from Zearalenone-induced apoptosis by reducing endoplasmic reticulum stress. Cell Stress & Chaperones, 2015, 20(6): 927-938. doi: 10.1007/s12192-015-0613-0.
doi: 10.1007/s12192-015-0613-0
|
[17] |
CAO L, ZHAO J, MA L, CHEN J W, XU J R, RAHMAN S U, FENG S B, LI Y, WU J J, WANG X C. Lycopene attenuates Zearalenone- induced oxidative damage of piglet Sertoli cells through the nuclear factor erythroid-2 related factor 2 signaling pathway. Ecotoxicology and Environmental Safety, 2021, 225: 112737. doi: 10.1016/j.ecoenv.2021.112737.
doi: 10.1016/j.ecoenv.2021.112737
|
[18] |
LECOMTE S, LELONG M, BOURGINE G, EFSTATHIOU T, SALIGAUT C, PAKDEL F. Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation. Toxicology and Applied Pharmacology, 2017, 325: 61-70. doi: 10.1016/j.taap.2017.04.005.
doi: S0041-008X(17)30154-0
pmid: 28396216
|
[19] |
KHOSROKHAVAR R, RAHIMIFARD N, SHOEIBI S, HAMEDANI M P, HOSSEINI M J. Effects of zearalenone and alpha-zearalenol in comparison with raloxifene on t47d cells. Toxicology Mechanisms and Methods, 2009, 19(3): 246-250. doi: 10.1080/15376510802455347.
doi: 10.1080/15376510802455347
pmid: 19730705
|
[20] |
ZONG S H, ZENG G F, FANG Y, PENG J Z, ZOU B, GAO T H, ZHAO J M. The effects of α-Zearalanol on the proliferation of bone-marrow-derived mesenchymal stem cells and their differentiation into osteoblasts. Journal of Bone and Mineral Metabolism, 2016, 34(2): 151-160. doi: 10.1007/s00774-015-0659- 1.
doi: 10.1007/s00774-015-0659-1
pmid: 25944420
|
[21] |
CORTINOVIS C, CALONI F, SCHREIBER N B, SPICER L J. Effects of fumonisin B1 alone and combined with deoxynivalenol or Zearalenone on porcine granulosa cell proliferation and steroid production. Theriogenology, 2014, 81(8): 1042-1049. doi: 10.1016/j.theriogenology.2014.01.027.
doi: 10.1016/j.theriogenology.2014.01.027
pmid: 24576714
|
[22] |
ZHENG W L, PAN S Y, WANG G G, WANG Y J, LIU Q, GU J H, YUAN Y, LIU X Z, LIU Z P, BIAN J C. Zearalenone impairs the male reproductive system functions via inducing structural and functional alterations of Sertoli cells. Environmental Toxicology and Pharmacology, 2016, 42: 146-155. doi: 10.1016/j.etap.2016.01.013.
doi: 10.1016/j.etap.2016.01.013
pmid: 26851377
|
[23] |
SANG Y Q, LI W Z, ZHANG G Y. The protective effect of resveratrol against cytotoxicity induced by mycotoxin, Zearalenone. Food & Function, 2016, 7(9): 3703-3715. doi: 10.1039/c6fo00191b.
doi: 10.1039/c6fo00191b
|
[24] |
QIN X S, CAO M J, LAI F N, YANG F, GE W, ZHANG X F, CHENG S F, SUN X F, QIN G Q, SHEN W, LI L. Oxidative stress induced by Zearalenone in porcine granulosa cells and its rescue by curcumin in vitro. PLoS ONE, 2015, 10(6): e0127551. doi: 10.1371/journal.pone.0127551.
doi: 10.1371/journal.pone.0127551
|
[25] |
WANG J J, LI M M, ZHANG W, GU A X, DONG J W, LI J P, SHAN A S. Protective effect of N-acetylcysteine against oxidative stress induced by Zearalenone via mitochondrial apoptosis pathway in SIEC02 cells. Toxins, 2018, 10(10): 407. doi: 10.3390/toxins10100407.
doi: 10.3390/toxins10100407
|
[26] |
ZHENG S Z, FU Y M, CHEN A P. De novo synthesis of glutathione is a prerequisite for curcumin to inhibit hepatic stellate cell (HSC) activation. Free Radical Biology and Medicine, 2007, 43(3): 444-453. doi: 10.1016/j.freeradbiomed.2007.04.016.
doi: 10.1016/j.freeradbiomed.2007.04.016
pmid: 17602960
|
[27] |
SAHIN K, ORHAN C, TUZCU Z, TUZCU M, SAHIN N. Curcumin ameloriates heat stress via inhibition of oxidative stress and modulation of Nrf2/HO-1 pathway in quail. Food and Chemical Toxicology, 2012, 50(11): 4035-4041. doi: 10.1016/j.fct.2012.08.029.
doi: 10.1016/j.fct.2012.08.029
pmid: 22939939
|
[28] |
张婧菲. 姜黄素对动物线粒体氧化损伤的保护作用及其抗氧化机制研究[D]. 南京: 南京农业大学, 2015.
|
|
ZHANG J F. The protective effects of curcumin on mitochondrial oxidant damages in animals and the potential antioxidant mechanism[D]. Nanjing: Nanjing Agricultural University, 2015.(in Chinese)
|
[29] |
李光辉, 钟秀伶, Aamir Nawab, 赵一, 效梅, 刘文超, 兰瑞霞, 吴江, 安立龙. 姜黄素对罗曼蛋鸡血液和组织抗氧化性能的影响. 安徽农业科学, 2018, 46(21): 96-99. doi: 10.3969/j.issn.0517-6611.2018.21.027.
doi: 10.3969/j.issn.0517-6611.2018.21.027
|
|
LI G H, ZHONG X L, NAWAB A, ZHAO Y, XIAO M, LIU W C, LAN R X, WU J, AN L L. Effects of curcumin on the antioxidant properties in the blood and tissues of Roman laying hens. Journal of Anhui Agricultural Sciences, 2018, 46(21): 96-99. doi: 10.3969/j.issn.0517-6611.2018.21.027.(in Chinese)
doi: 10.3969/j.issn.0517-6611.2018.21.027
|
[30] |
doi: 10.3864/j.issn.0578-1752.2021.08.017
|
|
JIANG C H, SUN X D, TANG Y, LUO S B, XU C, CHEN Y Y. Curcumin alleviates H 2O 2-induced oxidative stress in bovine mammary epithelial cells via the Nrf2 signaling pathway. Scientia Agricultura Sinica, 2021, 54(8): 1787-1794. doi: 10.3864/j.issn.0578-1752.2021.08.017.(in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.08.017
|
[31] |
CARAFA V, ROTILI D, FORGIONE M, CUOMO F, SERRETIELLO E, HAILU G S, JARHO E, LAHTELA-KAKKONEN M, MAI A, ALTUCCI L. Sirtuin functions and modulation: from chemistry to the clinic. Clinical Epigenetics, 2016, 8: 61. doi: 10.1186/s13148-016-0224-3.
doi: 10.1186/s13148-016-0224-3
pmid: 27226812
|
[32] |
CHEN J Y, LU Y, TIAN M Y, HUANG Q R. Molecular mechanisms of FOXO1 in adipocyte differentiation. Journal of Molecular Endocrinology, 2019, 62(3): R239-R253. doi: 10.1530/JME-18-0178.
doi: 10.1530/JME-18-0178
|