中国农业科学 ›› 2021, Vol. 54 ›› Issue (10): 2084-2094.doi: 10.3864/j.issn.0578-1752.2021.10.005
李美炫1(),朱西存1,2(
),白雪源1,彭玉凤1,田中宇1,姜远茂3
收稿日期:
2020-07-08
接受日期:
2020-09-09
出版日期:
2021-05-16
发布日期:
2021-05-24
通讯作者:
朱西存
作者简介:
李美炫,E-mail: 基金资助:
LI MeiXuan1(),ZHU XiCun1,2(
),BAI XueYuan1,PENG YuFeng1,TIAN ZhongYu1,JIANG YuanMao3
Received:
2020-07-08
Accepted:
2020-09-09
Online:
2021-05-16
Published:
2021-05-24
Contact:
XiCun ZHU
摘要:
【目的】去除无人机多光谱遥感影像中的阴影,以提高苹果树冠层氮素含量反演模型精度。【方法】以山东省栖霞市苹果园为试验区,利用2019年6月采集的无人机多光谱影像,分别基于归一化阴影指数(normalized shaded vegetation index,NSVI)和归一化冠层阴影指数(normalized difference canopy shadow index,NDCSI)去除果树冠层多光谱影像中的阴影,提取非阴影区域果树冠层光谱信息;通过相关性分析方法,将基于原始光谱影像和基于NSVI、NDCSI去除阴影后提取的光谱数据与实测叶片氮素含量进行相关性分析,分别筛选氮素含量的敏感波段并构建光谱参量;采用偏最小二乘(partial least square,PLS)及支持向量机(support vector machine,SVM)方法构建果树冠层氮素含量反演模型并进行精度检验。【结果】绿光波段和红光波段为果树冠层氮素含量反演的敏感波段;阴影削弱了果树冠层的光谱信息,去除阴影前后,冠层多光谱各波段光谱差异较大,在红边波段及近红外波段尤为明显;基于2个阴影指数去除阴影后构建的氮素反演模型精度均有提升,最优模型为基于NDCSI去除阴影后构建的支持向量机氮素含量反演模型,该模型建模集R2和RPD分别为0.774、1.828;验证集R2和RPD分别为0.723、1.819。【结论】基于NDCSI可有效去除无人机多光谱果树冠层影像中的阴影,提高氮素含量反演精度,为果园氮素精准管理提供了有效参考。
李美炫,朱西存,白雪源,彭玉凤,田中宇,姜远茂. 基于无人机影像阴影去除的苹果树冠层氮素含量遥感反演[J]. 中国农业科学, 2021, 54(10): 2084-2094.
LI MeiXuan,ZHU XiCun,BAI XueYuan,PENG YuFeng,TIAN ZhongYu,JIANG YuanMao. Remote Sensing Inversion of Nitrogen Content in Apple Canopy Based on Shadow Removal in UAV Multi-Spectral Remote Sensing Images[J]. Scientia Agricultura Sinica, 2021, 54(10): 2084-2094.
表3
光谱参量及其与氮素含量的相关性分析"
序号 Number | 光谱指数 Spcetral index | 相关系数R | ||
---|---|---|---|---|
原始光谱信息 Original reflectivity | 基于NSVI提取光谱信息 NSVI reflectivity | 基于NDCSI提取光谱信息 NDCSI reflectivity | ||
1 | Bg+Br | -0.692 | -0.756 | -0.790 |
2 | Bg-Br | -0.527 | -0.587 | -0.627 |
3 | Bg×Br | -0.700 | -0.738 | -0.763 |
4 | Br/(Bg+Br) | -0.290 | -0.264 | -0.246 |
5 | $\sqrt{B\text{g}\times Br}$ | -0.699 | -0.740 | -0.766 |
6 | $\sqrt{B{{g}^{2}}+B{{r}^{2}}}$ | -0.679 | -0.754 | -0.793 |
7 | 1/(Bg+Br) | 0.687 | 0.754 | 0.792 |
8 | 1/(Bg-Br) | 0.512 | 0.584 | 0.627 |
9 | $\sqrt{B\text{g}+B\text{r}}$ | -0.691 | -0.756 | -0.791 |
10 | $\sqrt{B\text{g}-Br}$ | -0.523 | -0.587 | -0.628 |
表4
基于三种影像PSL模型反演结果"
影像类型 Images type | 建模精度 Calibration accuracy | 验证精度 Verification accuracy | ||
---|---|---|---|---|
决定系数 R2 | 相对分析误差 RPD | 决定系数 R2 | 相对分析误差 RPD | |
原始多光谱影像 Original multispectral image | 0.575 | 1.432 | 0.154 | 0.878 |
NSVI去除阴影后影像 Image after shadow removal based on NSVI | 0.622 | 1.474 | 0.670 | 1.426 |
NDCSI去除阴影后影像 Image after shadow removal based on NDCSI | 0.750 | 1.837 | 0.748 | 1.660 |
表5
基于三种影像SVM模型反演结果"
影像类型 Images type | 建模精度 Calibration accuracy | 验证精度 Verification accuracy | ||
---|---|---|---|---|
决定系数 R2 | 相对分析误差 RPD | 决定系数 R2 | 相对分析误差 RPD | |
原始多光谱影像 Original multispectral image | 0.607 | 1.415 | 0.141 | 0.895 |
NSVI去除阴影后影像 Image after shadow removal based on NSVI | 0.656 | 1.551 | 0.627 | 1.479 |
NDCSI去除阴影后影像 Image after shadow removal based on NDCSI | 0.774 | 1.828 | 0.723 | 1.819 |
[1] |
ZHAO D, REDDY K R, KAKANI V G, REDDY V R. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy, 2005,22(4):391-403.
doi: 10.1016/j.eja.2004.06.005 |
[2] | 田歌, 李慧峰, 田蒙, 刘晓霞, 陈倩, 朱占玲, 姜远茂, 葛顺峰. 不同水肥一体化方式对苹果氮素吸收利用特性及产量和品质的影响. 应用生态学报, 2020,31(6):1867-1874. |
TIAN G, LI H F, TIAN M, LIU X X, CHEN Q, ZHU Z L, JIANG Y M, GE S F. Effects of different integration of water and fertilizer modes on the absorption and utilization of nitrogen fertilizer and fruit yield and quality of apple trees. Chinese Journal of Applied Ecology, 2020,31(6):1867-1874. (in Chinese) | |
[3] | 王凌, 赵庚星, 朱西存, 王瑞燕, 常春艳. 花期苹果树冠氮素营养状况的卫星遥感反演. 应用生态学报, 2013,24(10):2863-2870. |
WANG L, ZHAO G X, ZHU X C, WANG R Y, CHANG C Y. Satellite remote sensing retrieval of canopy nitrogen nutritional status of apple trees at blossom stage. Chinese Journal of Applied Ecology, 2013,24(10):2863-2870. (in Chinese) | |
[4] | 赵静, 李志铭, 鲁力群, 贾鹏, 杨焕波, 兰玉彬. 基于无人机多光谱遥感图像的玉米田间杂草识别. 中国农业科学, 2020,53(8):1545-1555. |
ZHAO J, LI Z M, LU L Q, JIA P, YANG H B, LAN Y B. Weed identification in maize field based on multi-spectral remote sensing of unmanned aerial vehicle. Scientia Agricultura Sinica, 2020,53(8):1545-1555. (in Chinese) | |
[5] | 刘昌华, 王哲, 陈志超, 周兰, 岳学智, 苗宇新. 基于无人机遥感影像的冬小麦氮素监测. 农业机械学报, 2018,49(6):207-214. |
LIU C H, WANG Z, CHEN Z C, ZHOU L, YUE X Z, MIAO Y X. Nitrogen monitoring of winter wheat based on unmanned aerial vehicle remote sensing image. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(6):207-214. (in Chinese) | |
[6] |
YUE J B, YANG G J, LI C C, LI Z H, WANG Y J, FENG H K, XU B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sensing, 2017,9(7):708-726.
doi: 10.3390/rs9070708 |
[7] |
CINAT P, DI GENNARO S F, BERTON A, MATESE A. Comparison of unsupervised algorithms for vineyard canopy segmentation from UAV multispectral images. Remote Sensing, 2019,11(9):1023-1046.
doi: 10.3390/rs11091023 |
[8] | 师翊, 耿楠, 胡少军, 张志毅, 张晶. 基于随机森林回归算法的苹果树冠层光照分布模型. 农业机械学报, 2019,50(5):214-222. |
SHI Y, GENG N, HU S J, ZHANG Z Y, ZHANG J. Illumination distribution model of apple tree canopy based on random forest regression algorithm. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(5):214-222. (in Chinese) | |
[9] |
ZHOU K, DENG X Q, YAO X, TIAN Y C, CAO W X, ZHU Y, USTIN S L, CHENG T. Assessing the spectral properties of sunlit and shaded components in rice canopies with near-ground imaging spectroscopy data. Sensors, 2017,17(3):578-594.
doi: 10.3390/s17030578 |
[10] | 于东方, 殷建平, 张国敏. 一种基于灰度直方图的遥感影像阴影自动检测方法. 计算机工程与科学, 2008,30(12):43-44. |
YU D F, YIN J P, ZHANG G M. An automatic shadow detection method for remote sensing images based on gray histogram. Computer Engineering & Science, 2008,30(12):43-44. (in Chinese) | |
[11] | 许妙忠, 余志惠. 高分辨率卫星影像中阴影的自动提取与处理. 测绘信息与工程, 2003(1):20-22. |
XU M Z, YU Z H. Automated extraction of shadows in very-high resolution spatial satellite images. Journal of Geomatics, 2003(1):20-22. (in Chinese) | |
[12] | 虢建宏, 田庆久, 吴昀昭. 遥感影像阴影多波段检测与去除理论模型研究. 遥感学报, 2006(2):151-159. |
GUO J H, TIAN Q J, WU J Z. Study on multispectral detecting shadow areas and a theoretical model of removing shadows from remote sensing images. National Remote Sensing Bulletin, 2006(2):151-159. (in Chinese) | |
[13] |
PU R L, LANDRY S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sensing of Environment, 2012,124:516-533.
doi: 10.1016/j.rse.2012.06.011 |
[14] |
TITS L, SOMERS B, STUCKENS J, FARIFTEH J, COPPIN P. Integration of in situ measured soil status and remotely sensed hyperspectral data to improve plant Production system monitoring: concept, perspectives and limitations. Remote Sensing of Environment, 2013,128:197-211.
doi: 10.1016/j.rse.2012.10.006 |
[15] | 奚祯苑, 刘丽娟, 陆灯盛, 葛宏立, 陈耀亮. 基于线性混合像元分解技术提取山核桃空间分布. 林业科学, 2015,51(10):43-52. |
XI Z Y, LIU L J, LU D S, GE H L, CHEN Y L. Mapping of carya cathayensis spatial distribution with linear spectral mixture model. Scientia Silvae Sinicae, 2015,51(10):43-52. (in Chinese) | |
[16] |
MILAS A S, AREND K, MAYER C, SIMONSON M A, MACKEY M. Different colours of shadows: Classification of UAV images. International Journal of Remote Sensing, 2017,38(8/10):3084-3100.
doi: 10.1080/01431161.2016.1274449 |
[17] | 焦俊男, 石静, 田庆久, 高林, 徐念旭. 多光谱影像NDVI阴影影响去除模型. 遥感学报, 2020,24(1):53-66. |
JIAO J N, SHI J, TIAN Q J, GAO L, XU N X. Research on multispectral-image-based NDVI shadow-effect-eliminating model. National Remote Sensing Bulletin, 2020,24(1):53-66. (in Chinese) | |
[18] |
ZHANG L F, SUN X J, WU T X, ZHANG H M. An analysis of shadow effects on spectral vegetation indexes using a ground-based imaging spectrometer. IEEE Geoscience and Remote Sensing Letters, 2015,12(11):2188-2192.
doi: 10.1109/LGRS.2015.2450218 |
[19] |
江洪, 袁亚伟, 王森. 阴影消除植被指数(SEVI)去除地形本影和落影干扰的性能评估与应用. 地球信息科学学报, 2019,21(12):1977-1986.
doi: 10.12082/dqxxkx.2019.190409 |
JIANG H, YUAN Y W, WANG S. Shadow-eliminated vegetation index (SEVI) for removing terrain shadow effect: Evaluation and application. Journal of Geo-information Science, 2019,21(12):1977-1986. (in Chinese)
doi: 10.12082/dqxxkx.2019.190409 |
|
[20] | 柳晓农, 江洪, 汪小钦. 构建植被区分阴影消除植被指数提取山地植被信息. 农业工程学报, 2019,35(20):135-144. |
LIU X N, JIANG H, WANG X Q. Extraction of mountain vegetation information based on vegetation distinguished and shadow eliminated vegetation index. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(20):135-144. (in Chinese) | |
[21] | 许章华, 刘健, 余坤勇, 刘涛, 龚从宏, 唐梦雅, 谢婉君, 李增禄. 阴影植被指数SVI的构建及其在四种遥感影像中的应用效果. 光谱学与光谱分析, 2013,33(12):3359-3365. |
XU Z H, LIU J, YU K Y, LIU T, GONG C H, TANG M Y, XIE W J, LI Z L. Construction of vegetation shadow index (SVI) and application effects in four remote sensing images. Spectroscopy and Spectral Analysis, 2013,33(12):3359-3365. (in Chinese) | |
[22] | 许章华, 林璐, 王前锋, 黄旭影, 刘健, 余坤勇, 陈崇成. 归一化阴影植被指数NSVI的构建及其应用效果(英文). 红外与毫米波学报, 2018,37(2):154-162. |
XU Z H, LIN L, WANG Q F, HUANG X Y, LIU J, XU K Y, CHEN C C. Construction and application effects of normalized shaded vegetation index. Journal of Infrared and Millimeter Waves, 2018,37(2):154-162. (in Chinese) | |
[23] |
XU N X, TIAN J, TIAN Q J, XU K J, TANG S F. Analysis of vegetation red edge with different illuminated/shaded canopy proportions and to construct normalized difference canopy shadow index. Remote Sensing, 2019,11(10):1192-1207.
doi: 10.3390/rs11101192 |
[24] | 杨贵军, 万鹏, 于海洋, 徐波, 冯海宽. 无人机多光谱影像辐射一致性自动校正. 农业工程学报, 2015,31(9):147-153. |
YANG G J, WAN P, YU H Y, XU B, FENG H K. Automatic radiation uniformity correction of multispectral imagery acquired with unmanned aerial vehicle. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(9):147-153. (in Chinese) | |
[25] | 蒲智, 杨辽, 白洁. 基于面向对象技术的高分辨率遥感影像的阴影检测与去除. 遥感技术与应用, 2008,23(6):735-738. |
PU Z, YANG L, BAI J. Shadow detection and removal based on object-oriented method in high spatial resolution remote sense image. Remote Sensing Technology and Application, 2008,23(6):735-738. (in Chinese) | |
[26] |
JIANG Z Y, HUETE A R, CHEN J, CHEN Y H, LI J, YAN G J, ZHANG X Y. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment, 2006,101(3):366-378.
doi: 10.1016/j.rse.2006.01.003 |
[27] | 陈红艳, 赵庚星, 陈敬春, 王瑞燕, 高明秀. 基于改进植被指数的黄河口区盐渍土盐分遥感反演. 农业工程学报, 2015,31(5):107-114. |
CHEN H Y, ZHAO G X, CHEN J C, WANG R Y, GAO M X. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(5):107-114. (in Chinese) | |
[28] | FU P, MEACHAM-HENSOLD K, GUAN K Y, WU J, BERNACCHI C. Estimating photosynthetic traits from reflectance spectra: A synthesis of spectral indices, numerical inversion, and partial least square regression. Plant Cell & Environment, 2020,43(5):1241-1258. |
[29] | ALI A M, DARVISHZADEH R, SKIDMORE A, GARA T W, O’CONNOR B, ROEOESLI C, HEURICH M, PAGANINI M. Comparing methods for mapping canopy chlorophyll content in a mixed mountain forest using Sentinel-2 data. International Journal of Applied Earth Observation and Geoinformation, 2020,87:14. |
[30] | 张卓, 龙慧灵, 王崇倡, 杨贵军. 冬小麦叶片光合特征高光谱遥感估算模型的比较研究. 中国农业科学, 2019,52(4):616-628. |
ZHANG Z, LONG H L, WANG C C, YANG G J. Comparison of hyperspectral remote sensing estimation models based on photosynthetic characteristics of winter wheat leaves. Scientia Agricultura Sinica, 2019,52(4):616-628. (in Chinese) | |
[31] | SHI Z, WANG Q L, PENG J, JI W J, LIU H J, LI X, RAPHAEL A V R. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Science China(Earth Sciences), 2014,57(7):1671-1680. |
[32] |
YAN G J, LI L Y, COY A, MU X H, CHEN S B, XIE D H, ZHANG W M, SHEN Q F, ZHOU H M. Improving the estimation of fractional vegetation cover from UAV RGB imagery by colour unmixing. ISPRS Journal of Photogrammetry and Remote Sensing, 2019,158:23-34.
doi: 10.1016/j.isprsjprs.2019.09.017 |
[33] |
ABOUTALEBI M, TORRES-RUA A F, KUSTAS W P, NIETO H, COOPMANS C, MCKEE M. Assessment of different methods for shadow detection in high-resolution optical imagery and evaluation of shadow impact on calculation of NDVI, and evapotranspiration. Irrigation Science, 2019,37(3):407-429.
doi: 10.1007/s00271-018-0613-9 |
[34] |
NOH H, ZHANG Q. Shadow effect on multi-spectral image for detection of nitrogen deficiency in corn. Computers and Electronics in Agriculture, 2012,83:52-57.
doi: 10.1016/j.compag.2012.01.014 |
[35] |
FILELLA I, SERRANO L, SERRA J, PENUELAS J. Evaluating Wheat Nitrogen Status with Canopy Reflectance Indices and Discriminant Analysis. Crop Science, 1995,35(5):1400-1405.
doi: 10.2135/cropsci1995.0011183X003500050023x |
[36] | 陈鹏飞, 梁飞. 基于低空无人机影像光谱和纹理特征的棉花氮素营养诊断研究. 中国农业科学, 2019,52(13):2220-2229. |
CHEN P F, LIANG F. Cotton nitrogen nutrition diagnosis based on spectrum and texture feature of images from low altitude unmanned aerial vehicle. Scientia Agricultura Sinica, 2019,52(13):2220-2229. (in Chinese) | |
[37] |
ZHOU K, GUO Y J, GENG Y N, ZHU Y, CAO W X, TIAN Y C. Development of a novel bidirectional canopy reflectance model for row-planted rice and wheat. Remote Sensing, 2014,6(8):7632-7659.
doi: 10.3390/rs6087632 |
[38] | 曾琪, 余坤勇, 姚雄, 郑文英, 张今朝, 艾婧文, 刘健. 基于PROSAIL辐射传输模型的毛竹林分冠层反射率模拟研究. 植物科学学报, 2017,35(5):699-707. |
ZENG Q, XU K Y, YAO X, ZHENG W Y, ZHANG J Z, AI J W, LIU J. Research on canopy reflectance modeling of Phyllostachys pubescens forest based on the PROSAIL canopy radiative transfer model. Plant Science Journal, 2017,35(5):699-707. (in Chinese) |
[1] | 冯子恒,宋莉,张少华,井宇航,段剑钊,贺利,尹飞,冯伟. 基于无人机多光谱和热红外影像信息融合的小麦白粉病监测[J]. 中国农业科学, 2022, 55(5): 890-906. |
[2] | 王淑婷,孔雨光,张赞,陈红艳,刘鹏. 基于星-机光谱融合的棉花叶片SPAD值反演[J]. 中国农业科学, 2022, 55(24): 4823-4839. |
[3] | 黄翀,侯相君. 基于Bi-LSTM模型的时间序列遥感作物分类研究[J]. 中国农业科学, 2022, 55(21): 4144-4157. |
[4] | 马啸,陈鹏飞. 基于无人机多光谱影像的小麦封垄前种植行识别方法改进[J]. 中国农业科学, 2022, 55(20): 3926-3938. |
[5] | 马雨阳,官海翔,杨昊轩,邵帅,邵逸群,刘焕军. 利用地形、土壤和作物信息辅助提高东北漫岗地数字高程模型精度的新方法[J]. 中国农业科学, 2021, 54(8): 1715-1727. |
[6] | 史丰智,王瑞燕,李玉环,闫宏,张晓鑫. LAI无人机多光谱遥感估测及其在盐渍土改良中的应用[J]. 中国农业科学, 2020, 53(9): 1795-1805. |
[7] | 赵静,李志铭,鲁力群,贾鹏,杨焕波,兰玉彬. 基于无人机多光谱遥感图像的玉米田间杂草识别[J]. 中国农业科学, 2020, 53(8): 1545-1555. |
[8] | 奚雪,赵庚星,高鹏,崔昆,李涛. 基于Sentinel卫星及无人机多光谱的滨海冬小麦种植区土壤盐分反演研究——以黄三角垦利区为例[J]. 中国农业科学, 2020, 53(24): 5005-5016. |
[9] | 石雅娇,陈鹏飞. 一种面向农业无人机影像分割的尺度参数自动确定方法[J]. 中国农业科学, 2020, 53(17): 3496-3508. |
[10] | 朱晓昱,徐大伟,辛晓平,沈贝贝,丁蕾,王旭,陈宝瑞,闫瑞瑞. 1992—2015年呼伦贝尔草原区不同草地类型分布时空变化遥感分析[J]. 中国农业科学, 2020, 53(13): 2715-2727. |
[11] | 程伟, 辛晓平. 基于TVDI的内蒙古草地干旱变化特征分析[J]. 中国农业科学, 2020, 53(13): 2728-2742. |
[12] | 陈鹏飞, 梁飞. 基于低空无人机影像光谱和纹理特征的棉花氮素营养诊断研究[J]. 中国农业科学, 2019, 52(13): 2220-2229. |
[13] | 王丹阳,陈红艳,王桂峰,丛津桥,王向锋,魏学文. 无人机多光谱反演黄河口重度盐渍土盐分的研究[J]. 中国农业科学, 2019, 52(10): 1698-1709. |
[14] | 陈鹏飞,李刚,石雅娇,徐志涛,杨粉团,曹庆军. 一款无人机高光谱传感器的验证及其在玉米叶面积指数反演中的应用[J]. 中国农业科学, 2018, 51(8): 1464-1474. |
[15] | 张春兰,杨贵军,李贺丽,汤伏全,刘畅,张丽妍. 基于随机森林算法的冬小麦叶面积指数遥感反演研究[J]. 中国农业科学, 2018, 51(5): 855-867. |
|