中国农业科学 ›› 2023, Vol. 56 ›› Issue (5): 801-820.doi: 10.3864/j.issn.0578-1752.2023.05.001

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦苗期根系性状的全基因组关联分析与优异位点挖掘

王脉1(), 董清峰1, 高珅奥1, 刘德政1, 卢山1, 乔朋放1, 陈亮1, 胡银岗1,2()   

  1. 1 西北农林科技大学农学院/旱区作物逆境生物学国家重点实验室,陕西杨凌 712100
    2 中国旱区节水农业研究院,陕西杨凌 712100
  • 收稿日期:2022-10-06 接受日期:2022-12-13 出版日期:2023-03-01 发布日期:2023-03-13
  • 通信作者: 胡银岗,E-mail:huyingang@nwafu.edu.cn
  • 联系方式: 王脉,E-mail:599157540@qq.com。
  • 基金资助:
    陕西省重点研发计划(2021KWZ-23)

Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat

WANG Mai1(), DONG QingFeng1, GAO ShenAo1, LIU DeZheng1, LU Shan1, QIAO PengFang1, CHEN Liang1, HU YinGang1,2()   

  1. 1 College of Agronomy, Northwest A & F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi
    2 Institute of Water-Saving Agriculture in Arid Areas of China, Yangling 712100, Shaanxi
  • Received:2022-10-06 Accepted:2022-12-13 Published:2023-03-01 Online:2023-03-13

摘要:

【目的】植物根系对水分及营养的获取、作物的生长发育和产量的形成至关重要。挖掘小麦苗期根系性状显著关联的SNP位点,预测相关候选基因,为解析小麦根系建成遗传机制及选育具有优良根系构型的小麦品种奠定基础。【方法】以189份小麦品种组成的自然群体为供试材料,调查2种培养条件(霍格兰营养液和去离子水)下培育21 d的苗期根系总长度(TRL)、根系总表面积(TRA)、根系总体积(TRV)、根系平均直径(ARD)及根系干重(RDW)等5个根系性状,试验进行2次重复,同时结合小麦660K SNP芯片的分型结果进行全基因组关联分析(genome-wide association study,GWAS)。此外,通过序列比对、结构域分析和注释信息预测候选基因,并采用竞争性等位基因特异性PCR(kompetitive allele specific PCR,KASP)技术开发根系性状的分子标记。【结果】霍格兰营养液培养条件下的根系性状变异范围较大,根系整体粗短;而去离子水条件下的根系细长、侧根较多。选用贝叶斯信息与连锁不平衡迭代嵌套式模型(BLINK)、压缩式混合线性模型(CMLM)、固定随机循环概率模型(FarmCPU)以及混合线性模型(MLM)4个模型,结合2种培养条件下的根系性状进行全基因关联分析,共检测到95个与小麦苗期根系性状显著关联的QTL位点(P<10-3),其中,有18个QTL在2个条件下同时被检测到,分布在7A、1B、2B、3B、7B、1D、2D及3D染色体,可解释8.68%—14.07%的表型变异。筛选获得的显著性位点中,有4个与前人的研究相近或一致,其余为新发现QTL位点。对共定位的SNP进行单倍型分析,有10个SNP能够将供试材料分为2种单倍型,且单倍型间的根系性状具有显著差异,同时,基于这些SNP开发KASP标记,筛选到与根系总体积及根系干重相关的2个KASP标记(XNR7143XNR3707)。进一步挖掘共定位SNP位点上下游区间内的基因,筛选到12个可能与根系发育相关的候选基因,其中,TraesCS7A02G160600编码酰基载体蛋白合成酶,参与根系脂肪酸的合成;TraesCS1B02G401800编码突触融合蛋白,对植物重力向性具有重要作用;TraesCS7B02G417900编码醛脱氢酶,参与脱落酸的合成,从而调控作物根系发育。【结论】小麦根系性状在不同基因型间差异显著,在2个条件下同时检测到18个显著QTL位点,开发了2个根系分子标记(XNR7143XNR3707),并筛选出12个与根系性状相关的候选基因。

关键词: 小麦, 根系性状, 全基因组关联分析, 共定位SNP位点, KASP标记, 候选基因

Abstract:

【Objective】Plant roots are critical for water and nutrient acquisition, crop growth and development as well as yield formation. Exploring SNP loci significantly associated with root traits in wheat at seedling stage and mining candidate genes, will lay a foundation for understanding the genetic mechanism of wheat root system architecture and breeding wheat elite varieties with better root architecture.【Method】In this study, 189 diverse wheat cultivars were assembled as an association-mapping panel, five root traits including total root length (TRL), total root area (TRA), total root volume (TRV), average root diameter (ARD) and root dry weight (RDW) were investigated by growing in two culture conditions (Hoagland nutrient solution and pure water), and the experiments were repeated twice. Then, genome-wide association studies (GWAS) were performed for the five root traits with genotypic data derived from Wheat 660K SNP Array. Candidate genes were predicted by sequence alignment, domain analysis, and annotation information. Futhermore, kompetitive allele specific PCR (KASP) markers were developed for root traits. 【Result】The root traits varied greatly among the 189 cultivars, and the roots were thick and short cultured under Hoagland nutrient solution, while slender seminal roots and more lateral roots were observed under pure water. A total of 95 QTLs significantly associated with root traits cultured in two conditions (P<10-3) were identified by genome-wide association studies with four models of BLINK (bayesian-information and linkage-disequilibrium iteratively nested keyway), CMLM (compressed mixed linear model), FarmCPU (fixed and random model circulating probability unification) and MLM (mixed linear model). Among them, 18 QTLs were detected in both culture conditions and distributed on chromosomes of 7A, 1B, 2B, 3B, 7B, 1D, 2D, and 3D, which explained 8.68%-14.07% of phenotypic variation. Of those significant loci, 4 QTLs were similar or consistent with that reported previously, and the rest were novel ones. Haplotype analysis conducted for co-localization QTLs of 10 SNPs revealed significant differences in root traits between the two haplotypes of wheat cultivars. Based on these SNPs, KASP markers XNR7143 and XNR3707 were developed for total root volume and root dry weight, respectively. In addition, 12 candidate genes possibly regulating root development were found by mining the genes within the interval of co-localization significant SNPs. Of them, TraesCS7A02G160600, encoding 3-oxoacyl-[acyl-carrier-protein] synthase, is involved in the synthesis of root fatty acids; TraesCS1B02G401800, encoding syntaxin, plays an important role in plant tropism; TraesCS7B02G417900, encoding aldehyde oxidase, contributes to the synthesis of abscisic acid and regulation of crop root development. 【Conclusion】The root traits of wheat varied significantly among the wheat genotypes. Genome-wide association studies detected 18 significant QTLs linked with root traits simultaneously in two culture conditions, two KASP markers were developed for root traits, and 12 candidate genes related to root development were screened, which might provide reference for understanding the regulation mechanism of wheat root traits and molecular marker-assisted breeding for wheat improvement.

Key words: wheat, root traits, genome-wide association study, co-localization SNPs, KASP (kompetitive allele specific PCR) markers, candidate genes